Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having enhanced flexural properties, which correlates to low composite backface signature. The composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Ballistic resistant composite articles that are resistant to both backface deformation and ballistic penetration. Multiple composites are attached to each other such that fibers in each adjacent composite are oriented at different angles. Each composite has an areal density of at least about 100 g/m2 wherein the areal density of the strike face composite is greater than half of the total areal density of overall multi-composite article.