Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene (“UHMW PE”) filaments and multi-filament yarns, and the yarns and articles produced therefrom. Each process produces UHMW PE yarns having tenacities of 45 g/denier to 60 g/denier or more at commercially viable throughput rates.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene yarns, and the yarns and articles produced therefrom. The surfaces of highly oriented yarns are subjected to a treatment that enhances the surface energy at the yarn surfaces and are coated with a protective coating immediately after the treatment to increase the expected shelf life of the treatment.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene (“UHMW PE”) filaments and multi-filament yarns, and the yarns and articles produced therefrom. Each process produces UHMW PE yarns having tenacities of 45 g/denier to 60 g/denier or more at commercially viable throughput rates.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having enhanced flexural properties, which correlates to low composite backface signature. The composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene fibers, and the fibers and articles produced therefrom. Exposed surfaces of the fibers are subjected to a treatment that enhances the surface energy at the fiber surfaces. Such treated surfaces are subsequently coated with a protective coating immediately after the treatment to increase the shelf life of the treatment. The coating comprises at least one poly(alkyl-oxide) polymer.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having enhanced a dynamic storage modulus, which correlates to low composite backface signature.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene yarns, and the yarns and articles produced therefrom. The surfaces of partially oriented yarns are subjected to a treatment that enhances the surface energy at the fiber surfaces and are coated with a protective coating immediately after the treatment to increase the shelf life of the treatment. The coated, treated yarns are then post drawn to form highly oriented yarns.