Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having enhanced flexural properties, which correlates to low composite backface signature. The composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.
Abstract:
An apparatus and method for evaluating the backface signature of flat panel ballistic resistant composites with accuracy, repeatability and improved correlation to the expected backface signature of shaped ballistic resistant composites in actual field use.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having enhanced a dynamic storage modulus, which correlates to low composite backface signature.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties. More particularly, ballistic resistant fibrous composites having high interlaminar lap shear strength between component fiber plies or fiber layers, which correlates to low composite backface signature. The high lap shear strength, low backface signature composites are useful for the production of hard armor articles, including helmet armor.