Abstract:
A radio system comprises a plurality of software defined radio units, and a plurality of digital data switches each in operative communication with at least one of the radio units, with the digital data switches operatively connected to each other. A plurality of antenna units are each in operative communication with at least one of the radio units through at least one of the digital data switches. A plurality of radio resources managers are each operatively coupled to one or more of the digital data switches, with each of the radio resources managers configured to control one or more of the digital data switches to route digital data between the radio units and the antenna units.
Abstract:
The radio system comprises a radio unit and an antenna unit coupled to the radio unit. The antenna unit is physically separate and located remote from the radio unit. The antenna unit further comprises a digital (pre-distortion engine configured to pre-distort a modulated digital data signal; a digital to analog converter configured to convert the pre distorted digital data signal to a pre-distorted analog data signal; and a power amplifier configured to amplify the pre-distorted analog data signal which distorts the pre-distorted analog data signal. The distortion introduced by the power amplifier is opposite to the pre-distortion introduced by the digital pre-distortion engine such that the pre-distortion introduced by the digital pre-distortion engine approximately cancels the distortion introduced by the power amplifier. The radio unit further comprises a coefficient computation engine configured to calculate coefficients used by the digital pre-distortion engine to pre-distort the modulated digital data signal.
Abstract:
Radio resource management (RRM) systems and methods are disclosed. In one embodiment, an RRM system comprises: at least one radio frequency unit that transmits and receives signals over an antenna; at least one software defined radio unit configured to communicate with the radio frequency unit, wherein the software defined radio unit generates and receives signals corresponding to different communication systems; at least one processing device coupled to the software defined radio unit; and at least one memory device coupled to the processing device and configured to store instructions which, when executed by the processing device, cause the processing device to: receive a plurality of situational data inputs; select at least one communication system using the situational data inputs; and configure the radio frequency unit and the software defined radio unit to transmit and receive signals using the selected communication system, wherein the configuration is based on the situation data inputs.
Abstract:
In one embodiment, a secure communications processor is provided. The secure communications data processor comprises a satellite datalink gateway; wherein the satellite datalink gateway is configured to translate data, to be transmitted to or received from a satellite communications system, from a first internet protocol to at least one of a second internet protocol or another protocol, and to be received by or transmitted from a router; a satellite communications link processor coupled to the satellite datalink gateway; and wherein the secure communications data processor is configured to be coupled between at least one router and a satellite communications radio system, and to be installed in a vehicle separately from the at least one router and the satellite communications radio system.
Abstract:
In one embodiment, a secure communications processor is provided. The secure communications data processor comprises a satellite datalink gateway; wherein the satellite datalink gateway is configured to translate data, to be transmitted to or received from a satellite communications system, from a first internet protocol to at least one of a second internet protocol or another protocol, and to be received by or transmitted from a router; a satellite communications link processor coupled to the satellite datalink gateway; and wherein the secure communications data processor is configured to be coupled between at least one router and a satellite communications radio system, and to be installed in a vehicle separately from the at least one router and the satellite communications radio system.
Abstract:
A radio system comprises a plurality of software defined radio units, and a plurality of digital data switches each in operative communication with at least one of the radio units, with the digital data switches operatively connected to each other. A plurality of antenna units are each in operative communication with at least one of the radio units through at least one of the digital data switches. A plurality of radio resources managers are each operatively coupled to one or more of the digital data switches, with each of the radio resources managers configured to control one or more of the digital data switches to route digital data between the radio units and the antenna units.
Abstract:
The radio system comprises a radio unit and an antenna unit coupled to the radio unit. The antenna unit is physically separate and located remote from the radio unit. The antenna unit further comprises a digital pre-distortion engine configured to pre-distort a modulated digital data signal; a digital to analog converter configured to convert the pre-distorted digital data signal to a pre-distorted analog data signal; and a power amplifier configured to amplify the pre-distorted analog data signal which distorts the pre-distorted analog data signal. The distortion introduced by the power amplifier is opposite to the pre-distortion introduced by the digital pre-distortion engine such that the pre-distortion introduced by the digital pre-distortion engine approximately cancels the distortion introduced by the power amplifier. The radio unit further comprises a coefficient computation engine configured to calculate coefficients used by the digital pre-distortion engine to pre-distort the modulated digital data signal.