Abstract:
A wideband power amplifier is presented. The wideband power amplifier configured to be coupled to a load having an impedance ZL, where the wideband power amplifier comprises: a quadrature coupler; a carrier amplifier coupled to the quadrature coupler; a peak amplifier coupled to the quadrature coupler; wherein the carrier amplifier saturates at an input power level lower than the input power level at which the peak amplifier saturates; wherein each of the carrier amplifier and the peak amplifier has a termination impedance of approximately Ropt, where Ropt is the optimum impedance at which the carrier amplifier and the peak amplifier will deliver rated max powers; a impedance transformer, coupled to the carrier amplifier having a characteristic impedance of 2*Ropt; an impedance transformer, coupled to the peak amplifier and the impedance transformer; wherein the impedance transformer is configured transform a load impedance ZL to 2*Ropt.
Abstract:
In one embodiment, a method is provided. The method comprises: selecting, with a communications management system configured to be installed on a vehicle, at least one primary channel on a multichannel transceiver; transmitting and/or receiving data over the at least one primary channel; searching, with the multichannel transceiver for other viable communications links; and selecting a new at least one primary channel.
Abstract:
A radio system, comprising an antenna; a baseband module, a power amplifier; and a variable power supply. The baseband module is configured to output a first signal to the antenna, pre-distort the first signal based on computed coefficients, and output a second signal. The second signal is determined based on one or more characteristics of the first signal, and the second signal is output if there is a change in the one or more characteristics of the first signal. The power amplifier is communicatively coupled to the baseband module and the antenna, and is configured to amplify the pre-distorted signal. The variable power supply is communicatively coupled to the power amplifier and the baseband module. The variable power supply is configured to receive the second signal and generate a variable drain supply voltage corresponding to the second signal. The drain supply voltage is output to the power amplifier.
Abstract:
A communications system is provided. The communications system comprises: at least one wideband remote radio system each of which is configured to be coupled to at least one antenna; a baseband system coupled to each of the at least one wideband remote radio system; wherein at least one wideband remote radio system and the baseband system are in different locations of a vehicle; wherein the baseband system comprises a datalink communications management system and an audio processing system; and wherein the at least one wideband radio baseband system is coupled to the audio processing system and the datalink communications management system.
Abstract:
A multichannel two antenna radio unit device comprising a left very high frequency (VHF) radio and a right VHF radio is provided. The left VHF radio unit comprises a left VHF radio transceiver, the left VHF radio transceiver comprising a left wideband multi-channel receiver configured to receive voice channels and data channels in an aeronautical VHF communication band, the left VHF radio configured to communicate on at least two voice channels and at least one data channel. The right VHF radio comprises a right VHF radio transceiver, the right VHF radio transceiver comprising a right wideband multi-channel receiver configured to receive voice channels and data channels in an aeronautical VHF communication band, the right VHF radio configured to communicate on the at least two voice channels and the at least one data channel, and communicatively coupled to the left VHF radio unit via a bi-directional serial bus.
Abstract:
An electronic system with real-time fault detection is provided. In one embodiment, the system includes analog circuitry, having a first input coupled to receive an input signal and a second input coupled to receive a test signal. The test signal is at an edge of a selected band that contains the input signal. The test signal is used to identify faults in the electronic system during operation of the electronic system. The electronic system further includes an analog to digital (A/D) converter coupled to an output of the analog circuitry. The A/D converter generates digitized spectrum. Digital circuitry is coupled to the output of the A/D converter. The digital circuitry processes the input signal from the band to provide an output for the system and processes the test signal to detect faults in the analog circuitry, the digital circuitry and the A/D converter.
Abstract:
One embodiment is directed towards an RF receiver for receiving a pulse-position modulated signal transmitted with a 1090 MHz ADS-B transmitter, wherein the pulse-position modulated signal is preceded by a preamble of 4 pulses that conform to an ADS-B protocol. The receiver can filter a digital sample stream with a filter matched to pulses in an earlier half of an expected preamble sequence to produce a first matched filter output sample stream. The receiver can also filter the digital sample stream with a filter matched to a pulses in a latter half of the expected preamble sequence to produce a second matched filter output sample stream. The receiver can determine that a sequence of pulses match the expected preamble sequence based on when the first matched filter output sample stream and the second matched filter output sample stream are above a minimum trigger level at the same time.
Abstract:
A radio signal processing system includes a first antenna; a second antenna; a first receiver communicatively coupled to the first antenna; a second receiver communicatively coupled to the second antenna; a first processing unit communicatively coupled to the first receiver and configured to receive a first signal from at least one of the first antenna and the second antenna when the system is operating in a first mode; a second processing unit communicatively coupled to the second receiver and configured to receive a second signal from the second antenna when the system is operating in a first mode; and wherein the first processing unit is further configured to receive a third signal from both the first antenna and the second antenna when the system is operating in a second mode.
Abstract:
A wideband multi-channel receiver comprises an antenna configured to receive a radio frequency band. A band-pass filter is in signal communication with the antenna, and a low-noise amplifier is in signal communication with the band-pass filter. A mixer is in signal communication with the low-noise amplifier and is configured to translate a radio frequency band to an intermediate frequency (IF) band. A tunable local oscillator is in signal communication with the mixer. At least one fixed-frequency notch filter is in signal communication with the mixer, with the notch filter configured to reject at least one interference signal in the IF band while passing remaining signals in the IF band. An analog-to-digital converter is in signal communication with the notch filter and is configured to convert the remaining signals in the IF band to digital signals.
Abstract:
One embodiment is directed towards an RF receiver for receiving a pulse-position modulated signal transmitted with a 1090 MHz ADS-B transmitter, wherein the pulse-position modulated signal is preceded by a preamble of 4 pulses that conform to an ADS-B protocol. The receiver can filter a digital sample stream with a filter matched to pulses in an earlier half of an expected preamble sequence to produce a first matched filter output sample stream. The receiver can also filter the digital sample stream with a filter matched to a pulses in a latter half of the expected preamble sequence to produce a second matched filter output sample stream. The receiver can determine that a sequence of pulses match the expected preamble sequence based on when the first matched filter output sample stream and the second matched filter output sample stream are above a minimum trigger level at the same time.