Abstract:
Embodiments of the present application propose a feedback method for an uplink channel, and an apparatus. In the solution, instead of always sending a first common message or a first scheduling command in any case, a base station determines, only after determining whether a data packet to be sent by a terminal is the last data packet of the terminal, whether a to-be-sent message including an indication bit that is used to indicate whether the base station correctly receives the data packet sent by the terminal is the first scheduling command or the first common message. Alternatively, when the base station determines that the terminal needs to send a next data packet or needs to retransmit the data packet, an indication bit for the terminal in at least two indication bits is used to indicate uplink control information. Therefore, this avoids a waste of resources.
Abstract:
A pilot signal transmission method, a channel estimation method, and an apparatus are provided, and the method for a pilot signal transmission includes: transmitting a pilot signal 1 CPICH1 over a first antenna, and transmitting a pilot signal 2 CPICH2 over a second antenna; transmitting a pilot signal CPICHk1 over a k1th antenna; and when it is determined that a terminal of a first category in the MIMO system is scheduled, transmitting a pilot signal CPICHk2 over the k1th antenna. Interference caused by a pilot signal to a traditional terminal is better reduced, performance of the traditional terminal is ensured while the terminal of the first category properly works in the MIMO system, and power consumption for transmitting a pilot signal is effectively reduced.
Abstract:
Embodiments of the present disclosure relate to a method, a device, a storage medium, and a computer program product for short-range wireless communication. The method includes: A receiving device receives a data frame from a sending device; generates a feedback frame for the data frame, where the feedback frame includes an encoded access code of the data frame, and the encoded access code indicates whether the data frame is correctly received; and sends the feedback frame to the receiving device.
Abstract:
This application provides a communication method and a device. The method includes: sending, by a terminal device to a network device, a random access preamble, receiving, by the terminal device, a random access response (RAR) from the network device, wherein the RAR indicates a first resource, and sending, by the terminal device, downlink channel quality indication information to the network device, wherein the downlink channel quality indication information is carried in a Message 3 on the first resource, and the downlink channel quality indication information is used to indicate downlink channel quality.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for improving call quality for a user, which relate to the field of communication technologies and are invented for improving call quality for a user while improving frequency spectrum utilization. The method for improving call quality for a user includes: obtaining an interference suppression parameter and frequency band interference information of a target carrier; determining an interference suppression coefficient according to the interference suppression parameter and the frequency band interference information; and suppressing interference on the target carrier by using an interference suppression apparatus having the interference suppression coefficient.
Abstract:
A data transmission method in the present application includes: determining, by first UE, a frame structure in a time unit, where the frame structure indicates that N type-1 OFDM symbols and a GP are included in the time unit, and a subcarrier spacing of each type-1 OFDM symbol is Δf1. Therefore, according to the data transmission method and the user equipment in embodiments of the present application, a frame structure in a time unit is determined. The frame structure indicates that N type-1 OFDM symbols and a GP are included in the time unit, and a subcarrier spacing of each type-1 OFDM symbol is Δf1. Therefore, when an NB-IOT system is deployed in an LTE system in an embedded manner, and when NB-IOT UE is sending data, a channel resource of the legacy LTE system can be adequately utilized, and a conflict with a legacy LTE SRS can be avoided.
Abstract:
A patch generator for generating a patch that expresses a series of updates to a source image that will transform the source image into a target image. The patch generator compares sections of the target image, in turn, with respective versions of the source image. The patch generator generates the series of updates for the patch in dependence on the comparisons between the sections of the target image and the respective versions of the source image. Comparing each section of the target image with versions of the source image that are expected to be stored by the device during the process of implementing the patch allows the possibility that the device could change the source image in its memory while it implements the patch.
Abstract:
The present disclosure relates to an iterative method for estimating covariance matrices of communication signals comprising a) computing a reference symbol covariance matrix estimate (k,l); b) inputting said reference symbol covariance matrix estimate (k,l) to a detector or a decoder in a first iteration, and thereafter inputting the covariance matrix estimate output from e) to the detector or the decoder in subsequent iterations to obtain an updated demodulated or decoded communication signal for each iteration; c) inputting the demodulated or decoded communication signal to a symbol generator; d) computing an updated data covariance matrix estimate (k,l) for each iteration based on data symbols of said regenerated communication signal; e) combining said reference symbol covariance matrix estimate (k,l) and said updated data covariance matrix estimate (k,l); and f) forwarding said covariance matrix estimate output to the detector or decoder in b) to obtain the updated demodulated or decoded communication signal for each iteration.
Abstract:
The present application discloses a random access method and apparatus. The method includes: grouping, by a network device, available random access resources into a plurality of random access resource groups; sending, by the network device, information about the plurality of random access resource groups to a terminal device; receiving, by the network device, a random access request that is sent by the terminal device based on the information about the plurality of random access resources groups; determining, by the network device, a target random access resource group to which a random access resource used for the random access request belongs; and determining, by the network device, an uplink transmission capability of the terminal device based on the target random access resource group.
Abstract:
A user equipment (UE) and a method are presented. The UE comprises a receiver unit and a processing circuit, and is configured for receiving wireless signals. The processing circuit is arranged for performing pre-detection of the received signals providing an initial estimation of transmitted signals. The processing circuit is also arranged for splitting the transmitted signal into disjoint subgroups, each one covering a subgroup of all layers used for the transmitted signal such that the subgroups together cover all the layers. The processing circuit is also arranged for interference cancellation performed on the subgroups of transmitted signals based on the initial estimation of the transmitted signals. The processing circuit is also arranged for detection of the subgroups of transmitted signals by utilization of an MLD algorithm, wherein the subgroup of layers within each one of the subgroups of transmitted signals is detected simultaneously.