Abstract:
The invention concerns a process for the conversion of a paraffinic feed produced from renewable resources, to the exclusion of paraffinic feeds obtained by a process employing a step for upgrading by the Fischer-Tropsch pathway, said process employing a catalyst comprising at least one hydrodehydrogenating metal, used alone or as a mixture, and a support comprising at least one Nu-10 zeolite and at least one silica-alumina, said process being carried out at a temperature in the range 150° C. to 500° C., at a pressure in the range 0.1 MPa to 15 MPa, at an hourly space velocity in the range 0.1 to 10 h−1 and in the presence of a total quantity of hydrogen mixed with the feed such that the hydrogen/feed ratio is in the range 70 to 2000 Nm3/m3 of feed.
Abstract:
A method for producing middle distillates from a feedstock produced by Fischer-Tropsch synthesis and containing oxygenated compounds, including: a) a step of bringing the feedstock into contact with a hydrotreating catalyst allowing the methanation of the CO and CO2 contained in the feedstock or originating from the decomposition of the oxygenated compounds present in the feedstock, b) a step of hydroisomerization/hydrocracking of at least a part of the liquid and gaseous effluent originating from step a), in the presence of a hydroisomerization/hydrocracking catalyst, c) a step of gas/liquid separation of the effluent originating from step b) into a gaseous fraction comprising predominantly hydrogen and a hydroisomerized/hydrocracked liquid fraction, d) a step of fractionation of the liquid fraction separated in step c) to obtain at least one fraction of middle distillate, in which the hydrogen in step a) is obtained from the gaseous fraction separated in step c).
Abstract:
A process is described for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis and divided into a light fraction (cold condensate) and a heavy fraction (waxes). The process involves fractionation of the waxes to obtain a light fraction, the final boiling point of which is between 350° C. and 400° C., and a heavy fraction which boils above the light fraction. The light fraction is mixed with at least one portion of the cold condensate. The resultant mixture is hydrotreated in the presence of a hydrotreatment catalyst of at least one portion of the resultant effluent is hydroisomerized in the presence of a catalyst comprising at least one noble metal from Group VIII and at least one zeolite IZM-2. At least one portion of the heavy fraction is subjected to hydrocracking and hydroisomerization in the presence of a hydrocracking catalyst. The resultant effluents are fractionated to obtain at least one middle distillates fraction.
Abstract:
The present invention relates to a process for the production of middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis comprising a limited content of molecules containing at least one oxygen atom in which said feedstock is subjected to at least one hydrocracking/hydroisomerization stage in the presence of a hydrogen stream also containing a limited atomic oxygen content.
Abstract:
The present invention relates to a process and a device for the conversion of aromatic compounds, in which the aromatic compounds of a hydrocarbon feedstock (1) comprising aromatic compounds containing 9 carbon atoms are isomerized in an isomerization unit (A) in the presence of a bifunctional isomerization catalyst having a hydro/dehydrogenating function and a hydroisomerizing function, to produce an isomerization effluent (10) enriched in trimethylbenzenes. The present invention also relates to a process and a device for the production of aromatic compounds, comprising the process and the device for the conversion of aromatic compounds.
Abstract:
The present invention describes a process for treating a feedstock obtained from a renewable source, comprising a step a) of hydrotreating said feedstock, a step b) of separation into at least a light fraction and at least a hydrocarbon liquid effluent, a step c) of removing at least a portion of the water from the hydrocarbon liquid effluent, a step d) of hydroconversion of at least a portion of the hydrocarbon liquid effluent, said hydroconversion step d) being characterized firstly by the use of a bifunctional catalyst comprising a molybdenum and/or tungsten sulfide phase promoted with nickel and/or cobalt and secondly by a ratio between the partial pressure of hydrogen sulfide and of hydrogen at the inlet of the hydroconversion unit of 10 less than 5×10−5 and a step e) of fractionation of the effluent obtained from step d) to obtain at least a middle distillate fraction.
Abstract:
Process for isomerization of paraffinic feedstocks operating at a temperature of between 200° C. and 500° C., at a total pressure of between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen of between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kg of feedstock introduced per kg of catalyst and per hour, using a catalyst having at least one group VIII metal, at least one matrix and at least one IZM-2 zeolite, the total weight content of alkali metal and/or alkaline-earth metal elements is less than 200 ppm by weight relative to the total mass of said catalyst.
Abstract:
The present invention describes a process for the isomerization of paraffinic feedstocks operating at a temperature of between 200° C. and 500° C., at a total pressure of between 0.45 MPa and 7 MPa, at a hydrogen partial pressure of between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilograms of feedstock introduced per kilogram of catalyst and per hour and using a catalyst comprising at least one metal of group VIII of the periodic table of elements, at least one matrix and at least one zeolite IZM-2, in which the ratio between the number of moles of silicon and the number of moles of aluminium of the zeolite IZM-2 network is between 25 and 55, preferably between 25 and 50, and preferably between 30 and 50.
Abstract:
A catalyst containing a IZM-2 zeolite and a specific content of alkali metal or alkaline-earth metal compounds, and a process for the isomerization of an aromatic C8 cut using the catalyst.
Abstract:
A process is described for preparing a catalyst comprising at least one zeolite with a modified EUO structure type, at least one matrix and at least one metal from group VIII of the periodic classification of the elements. Said catalyst is used in a process for the isomerization of an aromatic feed comprising at least one compound containing eight carbon atoms per molecule.