Abstract:
The present disclosure relates to a quantum bit (qubit) chip. The qubit chip includes two or more qubit wafers arranged along a common axis and one or more spacer elements. The spacer elements and the qubit wafers are alternately arranged on the common axis. The qubit chip further includes a conductive arrangement configured to electrically connect the two or more qubit wafers, where the conductive arrangement includes at least one superconducting via per each qubit wafer of the two or more qubit wafers and each spacer element of the one or more spacer elements, the at least one superconducting via passing through the qubit wafer or spacer element.
Abstract:
A complementary logic technology is disclosed whereby a logic gate comprises at least two metal-to-insulator transition (MIT) elements and at least two thermoelectric elements, each MIT element being thermally coupled to a corresponding thermoelectric element. In logic gates, each electric signal at an input terminal of a logic gate is first converted into two complementary thermal signals, and these thermal signals in turn determine the status of the output terminal of the logic gate, thereby generating an electrical output signal inverse to the electrical input signal or an output signal which is a Boolean operation on input signals. The parallel connection(s) of thermoelectric elements of the logic gate is used to create corresponding thermal signals for each electrical input signal. The MIT elements of the logic gate are then arranged to, in response to the associated thermal signals, execute a Boolean operation.
Abstract:
The present disclosure relates generally to static random-access memory (SRAM) devices. Specifically, the disclosure proposes a SRAM device with a three-layered SRAM cell design. The SRAM cell comprises a storage comprising four storage transistors, and comprises two access transistors to control access to the storage cell. The SRAM cell further comprises a stack of three layer structures. Two of the storage transistors are formed in a first layer structure of the stack, and two other of the storage transistors are formed in a second layer structure of the stack adjacent to the first layer structure. The two access transistors are formed in a third layer structure of the stack adjacent to the second layer structure. Each layer structure comprises a semiconductor material, the transistors in the layer structure are based on that semiconductor material, and at least two of the three layer structures comprise a different type of semiconductor material.
Abstract:
The disclosed technology generally relates to magnetic devices and more particularly to spin torque majority gate devices, and to methods of operating such devices. In one aspect, a majority gate device comprises a free ferromagnetic layer comprising 3N input zones and an output zone. The output zone has a polygon shape having 3N sides, where each input zone adjoins the output zone. The input zones are arranged around the output zone according to a 3N-fold rotational symmetry, where N is a positive integer greater than 0. The input zones are spaced apart from one another by the output zone. The majority gate device additionally comprises a plurality of input controls, where each of the input zones is magnetically coupled to a corresponding one of the plurality of input controls, where each of the input controls is configured to control the magnetization state of the corresponding input zone. The majority gate device further comprises an output sensor magnetically coupled to the output zone, where the output sensor is adapted for sensing the magnetization state of the output zone. Each input zones adjoins the output zone at one of the 3N sides.