Abstract:
A catalyst for converting carbon oxide into methanol, which is a metal oxide including 35˜65 parts by weight of Cu, 20˜50 parts by weight of Zn, 2˜10 parts by weight of Al, and 0.1˜5 parts by weight of Si, wherein the metal oxide further includes In, Ce, or a combination thereof, and the content of In and Ce are independently 0.05 wt %˜5 wt % based on the total weight of Cu, Zn, Al, and Si in the catalyst. A process of converting carbon oxide into methanol using the above catalyst is also provided.
Abstract:
Disclosed is a method for selectively hydrogenating a copolymer, including contacting a heterogeneous catalyst with a copolymer to process hydrogenation The copolymer includes aromatic rings and double bonds, and the double bonds are hydrogenated, and the aromatic rings are substantially not hydrogenated. The heterogeneous catalyst includes a metal catalyst such as platinum, palladium, platinum -iridium alloy, or platinum-rhenium alloy formed on a porous support. The hydrogenation is processed at a temperature of 40° C. to 150° C. under a hydrogen pressure of 10 kg/cm2 to 50 kg/cm2.
Abstract:
A catalyst for methanation reaction and a method for preparing methane are provided. The catalyst for methanation reaction includes a core, a shell encapsulating the core, and an active metal. The core includes cerium dioxide (CeO2), the shell includes zirconium dioxide (ZrO2), and the active metal is in particle form and is disposed on an outer surface of the shell layer.
Abstract:
A method for preparing dialkyl carbonate is provided. The preparation method includes the following steps. An alcohol compound, carbon dioxide and a catalyst are mixed to form a mixing solution. Organic acid is added to the mixing solution to carry out a synthesis reaction of dialkyl carbonate. The alcohol compound includes methanol, ethanol, propanol or butanol. The catalyst includes cerium oxide, zirconium oxide, titanium oxide, lanthanum oxide or a combination thereof. The organic acid includes formic acid, acetic acid, propionic acid, butyric acid, valeric acid or a combination thereof.
Abstract:
A process of utilizing the catalyst for converting carbon oxide into methanol is provided. The process includes putting a catalyst into a fixed bed reactor and introducing a gas mixture of hydrogen and the carbon oxide into the fixed bed reactor, and performing a hydrogenation reaction under the effect of the catalyst to form the methanol
Abstract:
A catalyst for converting carbon oxide into methanol is provided. The catalyst includes 40-60 parts by weight of Cu, 25-40 parts by weight of Zn, 2-15 parts by weight of Al, 0.1-3 parts by weight of Si, and a metal. The metal includes Pd or Au, and the Pd and the Au are independently 0.1 wt %-5 wt %, based on the total weight of Cu, Zn, Al, and Si in the catalyst.
Abstract:
A heterogeneous catalyst for selectively hydrogenating a copolymer is provided, which includes a porous support, a metal oxide wrapping a part of the surface of the porous support, and a plurality of palladium particles on the porous support and the metal oxide. A method for selectively hydrogenating a copolymer is also provided, which includes contacting a heterogeneous catalyst to a copolymer to process hydrogenation. The copolymer includes aromatic rings and nonaromatic double bonds, and the nonaromatic double bonds are hydrogenated, and the aromatic rings are substantially not hydrogenated. The heterogeneous catalyst includes a porous support, a metal oxide wrapping a part of the surface of the porous support, and a plurality of palladium particles formed on the porous support and the metal oxide.