OPTICAL COHERENT RECEIVER ON A CHIP

    公开(公告)号:US20240388366A1

    公开(公告)日:2024-11-21

    申请号:US18787886

    申请日:2024-07-29

    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to coherent optical receivers, including coherent receivers with integrated all-silicon waveguide photodetectors and tunable local oscillators implemented within CMOS technology. Embodiments are also directed to tunable silicon hybrid lasers with integrated temperature sensors to control wavelength. Embodiments are also directed to post-process phase correction of optical hybrid and nested I/Q modulators. Embodiments are also directed to demultiplexing photodetectors based on multiple microrings. In embodiments, all components may be implements on a silicon substrate. Other embodiments may be described and/or claimed.

    Multi-wavelength laser
    2.
    发明授权

    公开(公告)号:US10727640B2

    公开(公告)日:2020-07-28

    申请号:US16233687

    申请日:2018-12-27

    Abstract: There is disclosed in one example a communication system, including: a data transmission interface; and a wavelength division multiplexing (WDM) silicon laser source to provide modulated data on a carrier laser via the data transmission interface, the WDM laser including a single laser cavity to generate an internally multiplexed multi-wavelength laser, the single laser cavity including a filter having a first grating period to generate a first wavelength and a second grating period to generate a second wavelength, the second grating period superimposed on the first grating period.

    Multi-wavelength laser generator using ring filter

    公开(公告)号:US12088060B2

    公开(公告)日:2024-09-10

    申请号:US17074050

    申请日:2020-10-19

    Abstract: Embodiments of the present disclosure are directed to multi-wavelength laser generator may produce light with a frequency comb having equally spaced frequency lines. In various embodiments, the laser generator includes first, a semiconductor gain element is used to provide gain to the laser being generated. Second, a ring resonator filter, or ring filter, is used to select the wavelength comb spacing. Third, a narrow-band DBR or narrow-band mirror is used to select the number of wavelengths that lase. Fourth, a wide-band or narrow-band mirror is used to provide optical feedback and to form the optical cavity. Fifth, a phase tuner section is used to align the cavity modes with the ring resonances (i.e. the ring filter modes) in order to reduce or minimize the modal loss. Other embodiments may be described and/or claimed.

    MULTI-WAVELENGTH LASER GENERATOR USING RING FILTER

    公开(公告)号:US20210057880A1

    公开(公告)日:2021-02-25

    申请号:US17074050

    申请日:2020-10-19

    Abstract: Embodiments of the present disclosure are directed to multi-wavelength laser generator may produce light with a frequency comb having equally spaced frequency lines. In various embodiments, the laser generator includes first, a semiconductor gain element is used to provide gain to the laser being generated. Second, a ring resonator filter, or ring filter, is used to select the wavelength comb spacing. Third, a narrow-band DBR or narrow-band mirror is used to select the number of wavelengths that lase. Fourth, a wide-band or narrow-band mirror is used to provide optical feedback and to form the optical cavity. Fifth, a phase tuner section is used to align the cavity modes with the ring resonances (i.e. the ring filter modes) in order to reduce or minimize the modal loss. Other embodiments may be described and/or claimed.

    Mechanisms for refractive index tuning semiconductor photonic devices

    公开(公告)号:US11175451B2

    公开(公告)日:2021-11-16

    申请号:US16733167

    申请日:2020-01-02

    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.

    MECHANISMS FOR REFRACTIVE INDEX TUNING SEMICONDUCTOR PHOTONIC DEVICES

    公开(公告)号:US20200150344A1

    公开(公告)日:2020-05-14

    申请号:US16733167

    申请日:2020-01-02

    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.

    MULTI-WAVELENGTH LASER
    10.
    发明申请

    公开(公告)号:US20190140415A1

    公开(公告)日:2019-05-09

    申请号:US16233687

    申请日:2018-12-27

    Abstract: There is disclosed in one example a communication system, including: a data transmission interface; and a wavelength division multiplexing (WDM) silicon laser source to provide modulated data on a carrier laser via the data transmission interface, the WDM laser including a single laser cavity to generate an internally multiplexed multi-wavelength laser, the single laser cavity including a filter having a first grating period to generate a first wavelength and a second grating period to generate a second wavelength, the second grating period superimposed on the first grating period.

Patent Agency Ranking