摘要:
A low complexity and low cost transmitted reference spread spectrum communications system provides several methods of generating a suitable wideband carrier, a method for combining the wideband carrier with a narrowband modulated wideband carrier, and a number of implementations of a simple, inexpensive receiver for the transmitted reference communications system. The transmitter includes a balanced modulator for modulating a wideband spreading signal with a narrowband message signal to generate a wideband carrier. A signal combiner combines the wideband carrier with a narrowband modulated wideband carrier to generate a transmitted reference spread spectrum signal. The receiver includes a selectable time delay device having a plurality of taps for receiving a detected received signal from the transmitter. A tap selector selects a delayed signal from the selectable time delay device. A mixer combines output signals of the selectable time delay device and the tap selector, and a leaky integrator receives the mixer output signal and controls the tap selector. The leaky detector generates the narrowband message signal.
摘要:
In a time division multiple access spacecraft communication system, each ground station determines when to send its information packets to arrive at the spacecraft at the beginning of a time slot. The calculation is based upon knowledge of the location of the spacecraft. A master ground station determines the location of the spacecraft by the use of the propagation delays between the various ground stations (including itself) and the spacecraft, together with knowledge of the locations of the ground stations. The spacecraft location is then transmitted back to the various ground stations. The determination of propagation delay by each ground station is performed in two major steps. The first step determines coarse time delay to within one bit interval by repeatedly transmitting a multibit unique word to the spacecraft, and counting bits until the next unique word is received from the spacecraft. To determine fine propagation delay, a high-frequency clock signal is counted from the time of transmission of each bit edge until the reception of the next bit edge. The sum of the coarse and fine delays, together with a plurality of frame intervals, establishes the range to the spacecraft.
摘要:
In a time division multiple access spacecraft communication system, each ground station determines when to send its information packets to arrive at the spacecraft at the beginning of a time slot. The calculation is based upon knowledge of the locations of the spacecraft and the transmitting ground station. A master ground station determines the location of the spacecraft by the use of the propagation delays between the various ground stations (including itself) and the spacecraft, together with knowledge of the locations of the ground stations. The spacecraft location is then transmitted back to the various ground stations. The determination of propagation delay by each ground station is performed by repeatedly transmitting a ranging signal containing a multiple-bit unique word to the spacecraft, and counting spreading code chips until the next unique word is received from the spacecraft.
摘要:
A ranging system for a communications spacecraft (14) overlays a Gaussian noise signal over a broadband channel which also carries information or traffic signals. The noise is used to establish the range between a ground station (12) and the spacecraft (14). The range is determined by delaying the Gaussian noise in a controllable delay (32), and autocorrelating the delayed noise with the noise returned over the communications channel from the spacecraft. The ranging system (FIG. 4) reduces the bandwidth of the noise in a filter (18) during initial acquisition, to color the noise and broaden the autocorrelation peak (FIG. 3a). The broad peak shortens the initial search time. Once the peak is initially found, the noise bandwidth is progressively broadened to narrow the autocorrelation peak (FIG. 3c) and to give a more accurate indication of range.
摘要:
A turbo decoder control comprises an address generator for addressing systematic data, parity data, and systematic likelihood ratios according to a pre-determined memory mapping. The systematic data samples are accessed in the order required by the MAP decoding algorithm such that interleaving and de-interleaving functions in the MAP decoding algorithm are performed in real-time, i.e., without delay. Such memory-mapping in combination with data handling functions (e.g., multiplexing and combinatorial logic) minimizes memory requirements for the turbo decoder and allows for use of programmable interleavers, variable block lengths, and multiple code rates.
摘要:
A high-speed turbo decoder utilizes a MAP decoding algorithm and includes a streamlined construction of functional units, or blocks, amenable to ASIC implementation. A gamma block provides symbol-by-symbol a posteriori state transition probability estimates. Two gamma probability function values are provided via selection switches to the alpha and beta blocks for calculating the alpha and beta probability function values, i.e., performing the alpha and beta recursions, respectively, in parallel, thus significantly increasing decoding speed. A scaling circuit monitors the values of the alpha and beta probability functions and prescribes a scale factor such that all such values at a trellis level remain within the precision limits of the system. A sigma block determines the a posteriori state transition probabilities (sigma values) and uses the sigma values to provide soft-decision outputs of the turbo decoder.
摘要:
Forward and backward recursive calculations in a maximum a posteriori decoding process are performed in parallel processes, rather than sequentially, allowing the a posteriori transition probabilities to be calculated in the same time interval as the recursions, thereby reducing decoding latency and required memory.
摘要:
A turbo decoder control comprises an address generator for addressing systematic data, parity data, and systematic likelihood ratios according to a pre-determined memory mapping. The systematic data samples are accessed in the order required by the MAP decoding algorithm such that interleaving and de-interleaving functions in the MAP decoding algorithm are performed in real-time, i.e., without delay. Such memory-mapping in combination with data handling functions (e.g., multiplexing and combinatorial logic) minimizes memory requirements for the turbo decoder and allows for use of programmable interleavers, variable block lengths, and multiple code rates.
摘要:
In a communications system, a trellis code word is segmented by both the encoder and a segmented MAP decoder. The segmented MAP decoder operates on code word segments as if they were individual code words and takes advantage of knowing the state of the encoder at specified times to reduce decoding latency and required memory. In a turbo coding system, for example, coding gain is maintained by interleaving the information bits across the segments of a component code word.
摘要:
A turbo decoder system utilizing a MAP decoding algorithm has a predetermined number of turbo decoder modules for decoding segments of a turbo code component code word in parallel, thereby expanding the block-length and data rate capability of the turbo decoder. Upon completion of any half iteration of the MAP decoding algorithm, the a posteriori bit probability estimates are provided to an interleave/de-interleave-and-convert-data function block wherein they are re-ordered, segmented, used to modify the original received data samples, and provided back to the respective turbo decoder modules as input data samples for the systematic bits. Decoding continues in this manner until a predetermined number of half iterations is performed, and data decisions are made on the final a posteriori estimates.