Abstract:
Provided is a spur gear component including a plurality of teeth protruding in a radial direction, extending in an axial direction, and arranged at equal pitches in a circumferential direction, the spur gear component including a fiber material having a shape corresponding to an arrangement pattern of the plurality of teeth and wound in a spiral shape around a center axis.
Abstract:
An end effector includes a holding unit that holds a screw member to be rotatable around the axis line of the screw member, and a rotary unit that is provided on the axis line, moves linearly along the axis line in a condition of being in contact with the head portion of the screw member held by the holding unit, and rotates the screw member around the axis line by rotation accompanying the linear motion.
Abstract:
Provided is a bevel gear component including a plurality of teeth protruding in an axial direction, extending toward an outer peripheral side, and arranged at equal pitches in a circumferential direction, the bevel gear component including a fiber material having a shape corresponding to an arrangement pattern of the plurality of teeth and wound around a center axis.
Abstract:
A force sensor and a robot that can suppress a load applied to load sensor elements are provided.A force sensor includes: a first base member one surface of which is fixed on a fixed member; a plurality of load sensor elements that is provided on another surface of the first base member to detect a load; a second base member that is disposed facing the other surface of the first base member to generate a preload to be applied to each of the load sensor elements toward the first base member; a preload adjusting unit that adjusts the magnitude of the preload generated by the second base member; and buffer bodies that receive a part of an external load to be applied to each of the load sensor elements from the outside.
Abstract:
In this θZ drive apparatus, at least three coil portions are arranged to be capable of driving a stage in a direction Z, a direction θx which is a rotation direction employing a direction X in a horizontal plane as a center line of rotation, and a direction θy which is a rotation direction employing a direction Y in the horizontal plane orthogonal to the direction X as a center line of rotation.
Abstract:
A motor drive system is provided with a motor, a torque sensor provided between the motor and a load, and a circuitry that controls driving of the motor. The circuitry is configured to execute estimating at least either of a speed or a position of the motor based on a torque detection signal detected by the torque sensor.
Abstract:
A transport system include: a workpiece holder configured to hold a workpiece; a moving body facing the workpiece holder at least in a gravity direction and movable in a movement direction intersecting the gravity direction; a weight reducer configured to apply a static non-contact force to the workpiece holder to reduce a weight of the workpiece holder; a force generator disposed on the moving body to face the workpiece holder in the gravity direction, the force generator configured to apply a controllable non-contact force to the workpiece holder so as to follow a movement of the moving body while levitating the workpiece holder having the reduced weight; and circuitry configured to control the controllable non-contact force generated by the force generator to control a relative position of the workpiece holder with respect to the moving body.
Abstract:
A substrate transport system comprises: a linear transport device configured to transport a substrate along a transport line; and a robot configured to receive the substrate from the linear transport device, load the substrate into a processing unit, unload the substrate from the processing unit, and deliver the substrate to the linear transport device, wherein the linear transport device comprises: a first moving body configured to move along the transport line; a second moving body configured to support the substrate; and a non-contact force generator configured to apply a non-contact force to the second moving body from the first moving body to cause the second moving body to follow movement of the first moving body while levitating, by the non-contact force, the second moving body with respect to the first moving body.
Abstract:
A motor control apparatus according to an embodiment includes a torque current controller, an excitation current controller, and an estimation unit. The torque current controller that performs torque current control on a motor based on a deviation between a feedback signal based on a detection result of a sensor that can detect torque or acceleration of the motor and a torque current reference. The excitation current controller that performs excitation current control on the motor based on an excitation current reference on which a high-frequency current reference is superimposed. The estimation unit that estimates at least one of a position and a velocity of the motor based on the deviation and the high-frequency current reference.