摘要:
One or more semiconductor wafers or portions thereof are scanned using a primary optical mode, to identify defects. A plurality of the identified defects, including defects of a first class and defects of a second class, are selected and reviewed using an electron microscope. Based on this review, respective defects of the plurality are classified as defects of either the first class or the second class. The plurality of the identified defects is imaged using a plurality of secondary optical modes. One or more of the secondary optical modes are selected for use in conjunction with the primary optical mode, based on results of the scanning using the primary optical mode and the imaging using the plurality of secondary optical modes. Production semiconductor wafers are scanned for defects using the primary optical mode and the one or more selected secondary optical modes.
摘要:
Methods and systems for detecting defects on a wafer using adaptive local thresholding and color filtering are provided. One method includes determining local statistics of pixels in output for a wafer generated using an inspection system, determining which of the pixels are outliers based on the local statistics, and comparing the outliers to the pixels surrounding the outliers to identify the outliers that do not belong to a cluster of outliers as defect candidates. The method also includes determining a value for a difference in color between the pixels of the defect candidates and the pixels surrounding the defect candidates. The method further includes identifying the defect candidates that have a value for the difference in color greater than or equal to a predetermined value as nuisance defects and the defect candidates that have a value for the difference in color less than the predetermined value as real defects.
摘要:
Systems and methods for detecting defects on a specimen based on structural information are provided. One system includes one or more computer subsystems configured for separating the output generated by a detector of an inspection subsystem in an array area on a specimen into at least first and second segments of the output based on characteristic(s) of structure(s) in the array area such that the output in different segments has been generated in different locations in the array area in which the structure(s) having different values of the characteristic(s) are formed. The computer subsystem(s) are also configured for detecting defects on the specimen by applying one or more defect detection methods to the output based on whether the output is in the first segment or the second segment.
摘要:
The correlation of optical images with SEM images includes acquiring a full optical image of a sample by scanning the sample with an optical inspection sub-system, storing the full optical image, identifying a location of a feature-of-interest present in the full optical image with an additional sources, acquiring an SEM image of a portion of the sample that includes the feature at the identified location with a SEM tool, acquiring an optical image portion at the location identified by the additional source, the image portions including a reference structure, correlating the image portion and the SEM image based on the presence of the feature-of-interest and the reference structure in both the image portions and the SEM image, and transferring a location of the feature-of-interest in the SEM image into the coordinate system of the image portion of the full optical image to form a corrected optical image.
摘要:
Methods and systems for determining a position of a defect in an electron beam image of a wafer are provided. One method includes determining a second position of a defect with respect to patterns imaged in a test image based on a first position of the defect in a difference image. The method also includes determining a third position of the defect with respect to the patterns in an electron beam image for the defect and determining an association between the first and third positions. In addition, the method includes determining a position of another defect in an electron beam image based on a first position of the other defect in a difference image and the determined association.
摘要:
Methods and systems for detecting defects on a specimen are provided. One method includes identifying first and second portions of dies on a specimen as edge dies and center dies, respectively. The method also includes determining first and second inspection methods for the first and second portions, respectively. Parameter(s) of comparisons performed in the first and second inspection methods are different. The method further includes detecting defects in at least one of the edge dies using the first inspection method and detecting defects in at least one of the center dies using the second inspection method.
摘要:
Systems and methods for removing nuisance data from a defect scan of a wafer are disclosed. A processor receives a design file corresponding to a wafer having one or more z-layers. The processor receives critical areas of the wafer and instructs a subsystem to capture corresponding images of the wafer. Defect locations are received and the design file is aligned with the defect locations. Nuisance data is identified using the potential defect location and the one or more z-layers of the aligned design file. The processor then removes the identified nuisance data from the one or more potential defect locations.
摘要:
The correlation of optical images with SEM images includes acquiring a full optical image of a sample by scanning the sample with an optical inspection sub-system, storing the full optical image, identifying a location of a feature-of-interest present in the full optical image with an additional sources, acquiring an SEM image of a portion of the sample that includes the feature at the identified location with a SEM tool, acquiring an optical image portion at the location identified by the additional source, the image portions including a reference structure, correlating the image portion and the SEM image based on the presence of the feature-of-interest and the reference structure in both the image portions and the SEM image, and transferring a location of the feature-of-interest in the SEM image into the coordinate system of the image portion of the full optical image to form a corrected optical image.
摘要:
The correlation of optical images with SEM images includes acquiring a full optical image of a sample by scanning the sample with an optical inspection sub-system, storing the full optical image, identifying a location of a feature-of-interest present in the full optical image with an additional sources, acquiring an SEM image of a portion of the sample that includes the feature at the identified location with a SEM tool, acquiring an optical image portion at the location identified by the additional source, the image portions including a reference structure, correlating the image portion and the SEM image based on the presence of the feature-of-interest and the reference structure in both the image portions and the SEM image, and transferring a location of the feature-of-interest in the SEM image into the coordinate system of the image portion of the full optical image to form a corrected optical image.
摘要:
The disclosure is directed to providing visual feedback for inspection algorithms and difference filters used to process test and reference images from an inspection system. A user interface may be configured for displaying information and accepting user commands. A computing system communicatively coupled to the user interface may be configured to receive at least one set of test and reference images collected by the inspection system. The computing system may be further configured to provide at least one visual representation of the test and reference images via the user interface to show effects of an inspection algorithm and/or difference filter.