摘要:
A device is provided that includes memory, logic and capacitor structures on a semiconductor-on-insulator (SOI) substrate. In one embodiment, the device includes a semiconductor-on-insulator (SOI) substrate having a memory region and a logic region. Trench capacitors are present in the memory region and the logic region, wherein each of the trench capacitors is structurally identical. A first transistor is present in the memory region in electrical communication with a first electrode of at least one trench capacitor that is present in the memory region. A second transistor is present in the logic region that is physically separated from the trench capacitors by insulating material. In some embodiments, the trench capacitors that are present in the logic region include decoupling capacitors and inactive capacitors. A method for forming the aforementioned device is also provided.
摘要:
A structure and method of forming a body contact for a semiconductor-on-insulator trench device. The method including: forming set of mandrels on a top surface of a substrate, each mandrel of the set of mandrels arranged on a different corner of a polygon and extending above the top surface of the substrate, a number of mandrels in the set of mandrels equal to a number of corners of the polygon; forming sidewall spacers on sidewalls of each mandrel of the set of mandrels, sidewalls spacers of each adjacent pair of mandrels merging with each other and forming a unbroken wall defining an opening in an interior region of the polygon, a region of the substrate exposed in the opening; etching a contact trench in the substrate in the opening; and filling the contact trench with an electrically conductive material to form the contact.
摘要:
A method of forming a trench memory cell includes forming a trench capacitor within a substrate material, the trench capacitor including a node dielectric layer formed within a trench and a conductive capacitor electrode material formed within the trench in contact with the node dielectric layer; forming a strap mask so as cover one side of the trench and removing one or more materials from an uncovered opposite side of the trench; and forming a conductive buried strap material within the trench; wherein the strap mask is patterned in a manner such that a single-sided buried strap is defined within the trench, the single-sided buried strap configured in a manner such that the deep trench capacitor is electrically accessible at only one side of the trench.
摘要:
A method of fabricating a vertical field effect transistor (“FET”) is provided which includes a transistor body region and source and drain regions disposed in a single-crystal semiconductor-on-insulator (“SOI”) region of a substrate adjacent a sidewall of a trench. The substrate includes a buried insulator layer underlying the SOI region and a bulk region underlying the buried insulator layer. A buried strap conductively connects the SOI region to a lower node disposed below the SOI region and a body contact extends from the transistor body region to the bulk region of the substrate, the body contact being insulated from the buried strap.
摘要:
Structures including a self-aligned strap for embedded trench memory (e.g., trench capacitor) on hybrid orientation technology (HOT) substrate, and related method, are disclosed. One structure includes a hybrid orientation substrate including a semiconductor-on-insulator (SOI) section and a bulk semiconductor section; a transistor over the SOI section; a trench capacitor in the bulk semiconductor section; and a self-aligned strap extending from a source/drain region of the transistor to an electrode of the trench capacitor. The method does not require additional masks to generate the strap, results in a self-aligned strap and improved device performance. In one embodiment, the strap is a silicide strap.
摘要:
A semiconductor fabrication method. First, a semiconductor structure is provided. The semiconductor structure includes a semiconductor substrate, a trench in the semiconductor substrate. The trench includes a side wall which includes {100} side wall surfaces and {110} side wall surfaces. The semiconductor structure further includes a blocking layer on the {100} side wall surfaces and the {110} side wall surfaces. Next, portions of the blocking layer on the {110} side wall surfaces are removed without removing portions of the blocking layer on the {100} side wall surfaces such that the {110} side wall surfaces are exposed to a surrounding ambient.
摘要:
A semiconductor structure and a method for forming the same. The semiconductor structure includes a semiconductor substrate. The semiconductor structure further includes an electrically insulating region on top of the semiconductor substrate. The semiconductor structure further includes a first semiconductor region on top of and in direct physical contact with the semiconductor substrate. The semiconductor structure further includes a second semiconductor region on top of the insulating region. The semiconductor structure further includes a capacitor in the first semiconductor region and the semiconductor substrate. The semiconductor structure further includes a capacitor electrode contact in the second semiconductor region and the electrically insulating region.
摘要:
A method is provided for fabricating a multi-port memory in which a plurality of parallel connected capacitors are in a cell. A plurality of trench capacitors are formed which have capacitor dielectric layers extending along walls of the plurality of trenches, the plurality of trench capacitors having first capacitor plates and second capacitor plates opposite the capacitor dielectric layers from the first capacitor plates. The first capacitor plates are conductively tied together and the second capacitor plates are conductively tied together. In this way, the first capacitor plates are adapted to receive a same variable voltage and the second capacitor plates are adapted to receive a same fixed voltage.
摘要:
A method of forming a memory cell having a trench capacitor and a vertical transistor in a semiconductor substrate includes a step of providing a bonded semiconductor wafer having a lower substrate with an [010] axis parallel to a first wafer axis and an upper semiconductor layer having an [010] axis oriented at forty-five degrees with respect to the wafer axis, the two being connected by a layer of bonding insulator; etching a trench through the upper layer and lower substrate; enlarging the lower portion of the trench and converting the cross section of the upper portion of the trench from octagonal to rectangular, so that sensitivity to alignment errors between the trench lithography and the active area lithography is reduced. An alternative version employs a bonded semiconductor wafer having a lower substrate formed from a (111) crystal structure and the same upper portion. Applications include a vertical transistor that becomes insensitive to misalignment between the trench and the lithographic pattern for the active area, in particular a DRAM cell with a vertical transistor.
摘要:
A structure and method of forming a body contact for an semiconductor-on-insulator trench device. The method including: forming set of mandrels on a top surface of a substrate, each mandrel of the set of mandrels arranged on a different corner of a polygon and extending above the top surface of the substrate, a number of mandrels in the set of mandrels equal to a number of corners of the polygon; forming sidewall spacers on sidewalls of each mandrel of the set of mandrels, sidewalls spacers of each adjacent pair of mandrels merging with each other and forming a unbroken wall defining an opening in an interior region of the polygon, a region of the substrate exposed in the opening; etching a contact trench in the substrate in the opening; and filling the contact trench with an electrically conductive material to form the contact.