Abstract:
Implants with hydrogel layers reinforced by three-dimensional fiber arrays can replace hyaline cartilage. Such implants should replace an entire cartilage segment, rather than creating a crevice around a plug, so these implants must be thin and flat, they must cover large areas, the tips of any tufts or stitches must not reach the hydrogel surface, and they must be flexible, for arthroscopic insertion. The use of computerized stitching machines to create such arrays enables a redesigned and modified test sample to be made with no delays, and no overhead or startup costs. This provides researchers with improved tools for making and testing implants that will need to go through extensive in vitro, animal, and human testing before they can be approved for sale and use. Fiber-reinforced hydrogels also can be secured to strong shape-memory rims, for securing anchoring to bones.
Abstract:
Implants with hydrogel layers reinforced by three-dimensional fiber arrays can replace hyaline cartilage. Such implants should replace an entire cartilage segment, rather than creating a crevice around a plug, so these implants must be thin and flat, they must cover large areas, the tips of any tufts or stitches must not reach the hydrogel surface, and they must be flexible, for arthroscopic insertion. The use of computerized stitching machines to create such arrays enables a redesigned and modified test sample to be made with no delays, and no overhead or startup costs. This provides researchers with improved tools for making and testing implants that will need to go through extensive in vitro, animal, and human testing before they can be approved for sale and use. Fiber-reinforced hydrogels also can be secured to strong shape-memory rims, for securing anchoring to bones.
Abstract:
Hydrogel devices for surgical implantation to replace damaged cartilage in a mammalian joint (such as a knee, hip, shoulder, etc.) are disclosed, with one or more of the following enhancements: (1) articulating surfaces that have been given negative surface charge densities that emulate natural cartilage and that interact with positively charged components of synovial fluid; (2) anchoring systems with affixed pegs that will lock into accommodating receptacles, which will be anchored into hard bone before the implant is inserted into a joint; (3) a three-dimensional reinforcing mesh made of strong but flexible fibers, embedded within at least a portion of the hydrogel.
Abstract:
Surgical tools are disclosed for minimally-invasive planing of bone surfaces that will support prosthetic implants, such as cartilage-repair implants. Such planing tools must create smooth surfaces that will closely fit the anchoring surface of an implant. Such tools can use a rotating cylindrical burr, partially covered by a cowl having adjustable components to control grinding depth and bone curvature. Burrs can be mounted on the ends of rotating shafts, or they can be angled, using drive-coupling interfaces. In other embodiments, shaver or burr tools can be supplemented by accessory-type devices (such as suction tubes, cautery tips, and pinchers) that can be extended beyond the normal working tip of a tool, to enable additional functions that will be useful during surgery.