摘要:
Methods for treating a patient using therapeutic renal neuromodulation and associated devices, systems, and methods are disclosed herein. One aspect of the present technology, for example, is directed to bi-directional control of helical- or spiral-shaped neuromodulation devices. A system can include, for example, a catheter having an elongated shaft and a treatment assembly at a distal portion of the elongated shaft. The catheter can further include a first control member configured to deploy a distal region of the treatment assembly and a second control member configured to deploy a proximal region of the treatment assembly. The proximal and distal regions of the treatment assembly are selectively transformable independent of each other.
摘要:
A method of a forming a hollow, drug-eluting medical device includes utilizing a hollow wire having an outer member and a lumen of the outer member, and filling the lumen with a fluid to form a supported hollow wire. The supported hollow wire is shaped into a stent pattern. Openings are formed through the outer member. The supported hollow wire is processed to remove the fluid from the lumen of the outer member without adversely affecting the outer member, leaving the hollow wire shaped into a stent pattern. The lumen is filled with a biologically or pharmacologically active substance.
摘要:
Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function or of vascular structures that feed or perfuse the neural fibers.
摘要:
Percutaneous methods of forming a venous valve from autologous tissue are disclosed. The methods include percutaneously creating one or two subintimal dissections for forming one or two flaps of intimal tissue. In one method, a puncture element is delivered by a catheter based delivery system to a treatment site where a new venous valve is to be created. The puncture element is deployed to gain access to a subintimal layer of the vein wall. A dilation balloon is than positioned and inflated within the subintimal layer to create a flap and corresponding pocket/sinus in the vein, which than acts as a one-way monocuspid valve in the manner of a native venous valve. In a similar manner, methods of forming new bicuspid venous valves by subintimal dissections are also disclosed.
摘要:
An obstruction removal system for percutaneous removal of clots or obstructions within the vascular system is disclosed. The obstruction removal system includes a multi-lumen catheter with a plurality of circulating capture devices occurring along a drive belt. The plurality of capture devices may be basket-like devices attached to the drive belt, or may be formed by integral coiled or protuberant sections of the drive belt. The circulating capture or interference devices affect removal of the clot or obstruction bit-by-bit through a series of passes.
摘要:
Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function or of vascular structures that feed or perfuse the neural fibers.
摘要:
Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function or of vascular structures that feed or perfuse the neural fibers.
摘要:
Percutaneous methods and apparatuses for forming a venous valve from autologous tissue. A catheter having a retractable dissecting system received therein is delivered to a target location where a new venous valve is to be created. A distal balloon or other radially-expandable component mounted on the catheter is expanded against the vein wall, and the dissecting system is proximally retracted to deploy one or more dissecting components that dissect a subintimal layer of the vein wall. Radial expansion of the dissecting component(s) within the vein wall creates one or more leaflets and corresponding pocket/sinuses in the vein that collectively act as a venous valve, and/or the radially-expandable component of the catheter is subsequently collapsed such that the dissecting component(s) each pull a flap of the dissected tissue towards the vein lumen to create one or more leaflet(s) and corresponding pocket/sinuses in the vein.
摘要:
Percutaneous methods of forming a venous valve from autologous tissue are disclosed. The methods include percutaneously creating one or two subintimal dissections for forming one or two flaps of intimal tissue. In one method, a puncture element is delivered by a catheter based delivery system to a treatment site where a new venous valve is to be created. The puncture element is deployed to gain access to a subintimal layer of the vein wall. A dilation balloon is than positioned and inflated within the subintimal layer to create a flap and corresponding pocket/sinus in the vein, which than acts as a one-way monocuspid valve in the manner of a native venous valve. In a similar manner, methods of forming new bicuspid venous valves by subintimal dissections are also disclosed.
摘要:
An apparatus and method is provided for stenting bifurcated vessels. A proximal angled stent is configured for implanting in a side-branch vessel wherein the proximal angled stent has an angulated portion that corresponds to the angle formed by the intersection of the side-branch vessel and the main vessel so that all portions of the side-branch vessel at the bifurcation are covered by the proximal angled stent. A main-vessel stent is provided for implanting in the main vessel, wherein the main-vessel stent has an aperture or stent cell that aligns with the opening to the side-branch vessel to permit unobstructed blood flow between the main vessel and the side-branch vessel. Side-branch and main-vessel catheter assemblies are advanced over a pair of guide wires for delivering, appropriately orienting, and implanting the proximal angled stent and the apertured stent.