Abstract:
Disclosed is a display device including features that suppresses threshold voltage variation among the oxide thin-film transistors of an array substrate and a method for manufacturing the same. The display device includes a first COG block including sub-pixels configured to receive an output signal from a first drive integrated circuit positioned in a first COG area; a second COG block including sub-pixels configured to receive an output signal from a second drive integrated circuit positioned in a second COG area; and an equipotential line extended from the first COG area to the second COG area.
Abstract:
A touch recognition enabled display panel includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
Provided is a liquid crystal display device according to an embodiment of the present disclosure. The display device includes: a first metal layer, a first insulating layer, a second metal layer, a second insulating layer, and a third metal layer deposited in sequence on a substrate. The first insulating layer and the second insulating layer include a one-hole bridge contact portion for exposing a part of the first metal layer and a part of the second metal layer at one time. The third metal layer is realized to be in contact with the first metal layer and the second metal layer through the one-hole bridge contact portion.
Abstract:
A touch recognition enabled display device includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A display panel including an oxide thin film transistor is disclosed. In the oxide thin film transistor, a part of the active layer between a source region and a drain region is covered with an etch stopper layer, and the etch stopper layer is partially covered by the first electrode and the second electrode of the oxide thin film transistor. The length in which the etch stopper layer is overlapped by the second electrode is greater than the length in which the etch stopper layer is overlapped by the first electrode to suppress threshold voltage shift in the oxide thin film transistor.
Abstract:
A touch recognition enabled display device includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A touch recognition enabled display panel includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A touch recognition enabled display device includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.