Abstract:
Provided are an organic light emitting display device and a method of manufacturing the organic light emitting display device according to an exemplary embodiment of the present disclosure. The organic light emitting display device includes: a substrate including a display area and a pad area; a pad electrode structure on the substrate in the pad area and including a first pad electrode and a second pad electrode on the first pad electrode; and a protection conductive layer covering a lateral surface of the second pad electrode so as to reduce corrosion of the second pad electrode.
Abstract:
There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
Abstract:
There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
Abstract:
There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
Abstract:
Disclosed herein is a transparent organic light-emitting display (OLED) device. A first sub-pixel includes a first transparent region and a first emissive region disposed in line with the first transparent region in a first direction, and a second sub-pixel includes a second transparent region area and a second emissive region in line with the second transparent region in the first direction. The second sub-pixel is disposed adjacent to the first sub-pixel in the second direction. The first emissive region is in line with the second transparent region in a second direction, and the second emissive region is in line with the first transparent region in the second direction. In the transparent OLED device according to an exemplary embodiment of the present disclosure, emissive regions are disposed in a zigzag pattern with respect to a gate line, so that the area of the transparent regions can be enlarged, and accordingly higher transmittance can be achieved.
Abstract:
There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
Abstract:
Embodiments of the disclosure relate to a touch display device with enhanced light extraction efficiency, comprising an insulation film including a concave portion and a surrounding portion disposed around the concave portion, a first electrode disposed on the concave portion and a portion of the surrounding portion, a bank including a first portion disposed on the first electrode in an area corresponding to a portion of the concave portion and a second portion disposed on the insulation film and the first electrode in an area corresponding to the surrounding portion, an organic layer disposed on the first electrode exposed by the bank, the organic layer including a light emitting layer, a second electrode disposed on the organic layer and the bank, an encapsulation layer disposed on the second electrode, a touch buffer layer disposed on the encapsulation layer, a plurality of touch electrodes disposed on the touch buffer layer, and at least one light reflecting member disposed on the touch buffer layer and spaced apart from the plurality of touch electrodes.
Abstract:
Embodiments of the disclosure relate to a touch display device with enhanced light extraction efficiency, comprising an insulation film including a concave portion and a surrounding portion disposed around the concave portion, a first electrode disposed on the concave portion and a portion of the surrounding portion, a bank including a first portion disposed on the first electrode in an area corresponding to a portion of the concave portion and a second portion disposed on the insulation film and the first electrode in an area corresponding to the surrounding portion, an organic layer disposed on the first electrode exposed by the bank, the organic layer including a light emitting layer, a second electrode disposed on the organic layer and the bank, an encapsulation layer disposed on the second electrode, a touch buffer layer disposed on the encapsulation layer, a plurality of touch electrodes disposed on the touch buffer layer, and at least one light reflecting member disposed on the touch buffer layer and spaced apart from the plurality of touch electrodes.
Abstract:
Provided are a Liquid Crystal Display (LCD) device and a driving method thereof. A method of driving a liquid crystal display (LCD) device includes: transferring a pull-up signal to a corresponding gate line formed in an in-cell touch panel during an image output period in one frame and, after the pull-up signal is outputted during the image output period, turning on a first pull-down transistor or a second pull-down transistor to transfer a pull-down signal to the gate line; and detecting a touch by using a touch electrode formed in the in-cell touch panel while the stage turns on the first pull-down transistor and the second pull-down transistor to transfer the pull-down signal to the corresponding gate line, during a touch sensing period in the one frame, wherein, the stages sequentially transfer the pull-up signal to the respective gate lines.
Abstract:
Embodiments of the disclosure relate to a touch display device with enhanced light extraction efficiency, comprising an insulation film including a concave portion and a surrounding portion disposed around the concave portion, a first electrode disposed on the concave portion and a portion of the surrounding portion, a bank including a first portion disposed on the first electrode in an area corresponding to a portion of the concave portion and a second portion disposed on the insulation film and the first electrode in an area corresponding to the surrounding portion, an organic layer disposed on the first electrode exposed by the bank, the organic layer including a light emitting layer, a second electrode disposed on the organic layer and the bank, an encapsulation layer disposed on the second electrode, a touch buffer layer disposed on the encapsulation layer, a plurality of touch electrodes disposed on the touch buffer layer, and at least one light reflecting member disposed on the touch buffer layer and spaced apart from the plurality of touch electrodes.