Abstract:
A method of transmitting data in a wireless local access network, the method includes transmitting, by an access point (AP), a request-to-send (RTS) frame to a plurality of receiving stations, the RTS frame including recipient information and channel information, the recipient information indicating the plurality of receiving stations, the channel information indicating a plurality of subchannels allocated to the plurality of receiving stations; receiving, by the AP, a plurality of clear-to-send (CTS) frames from the plurality of receiving stations as a response to the RTS frame, each CTS frame being received through at least one subchannel allocated to a corresponding one of the plurality of receiving stations; and transmitting, by the AP, a physical layer protocol data unit (PPDU) to the plurality of receiving stations, the PPDU including address information indicating the plurality of receiving stations and a plurality of Aggregate-Medium Access Control (MAC) Protocol Data Units (A-MPDUs) for the plurality of receiving stations.
Abstract:
A method of transmitting a signal, performed by a base station, in a wireless communication system. The method according to one embodiment includes transmitting a backhaul downlink signal to a relay station through a backhaul downlink transmission subframe. The backhaul downlink transmission subframe includes 14 orthogonal frequency division multiplexing (OFDM) symbols and the 14 OFDM symbols are indexed 0 to 13. An access downlink transmission subframe, used by the relay station to transmit a signal to a user equipment, and the backhaul downlink transmission subframe are transmitted with a time aligned subframe boundary, and OFDM symbols having indices K to 12 are used for transmitting the backhaul downlink signal, where K is a natural number and 1≦K≦3.
Abstract:
A method is provided for operating a relay station (RS) in a wireless communication system based on time division duplex (TDD) using a radio frame composed of a plurality of downlink subframes and at least one uplink subframe. A pair of subframes is determined to be used for communication between a base station (BS) and the RS. The pair of subframes comprises a configured downlink subframe and a configured uplink subframe. A signal is received from the BS in the configured downlink subframe which is configured by the RS as a multicast/broadcast single frequency network (MBSFN) subframe, and a signal is transmitted to the BS in the configured uplink subframe.
Abstract:
Provided are a method and a wireless device for transmitting a sounding reference signal in a wireless communication system. The wireless device receives an SRS (sounding reference signal) configuration for a periodic transmission, and transmits the SRS in a randomly determined subframe from among a plurality of SRS subframes determined on the basis of the SRS configuration.
Abstract:
Provided is a data receiving method in a wireless communication system and a wireless device using the same. A wireless device monitors a downlink control channel, and receives a downlink reference signal to be used in a demodulation of a downlink transmission block based on the resource to be used in the monitoring the downlink control channel.
Abstract:
A method performed by a user equipment (UE) in a wireless communication system, includes receiving a sounding reference signal (SRS) configuration via a radio resource control (RRC) signaling, the SRS configuration indicating a subframe configured for SRS transmission, wherein the SRS configuration includes an indicator indicating whether an aperiodic SRS transmission or a periodic SRS transmission is performed in the subframe configured for SRS transmission; based on the indicator indicating that the aperiodic SRS transmission is performed, receiving request information for requesting a transmission of an SRS and aperiodically transmitting the SRS in the configured subframe; and based on the indicator indicating that the periodic SRS transmission is performed, periodically transmitting the SRS in the configured subframe.
Abstract:
A method is provided for receiving a downlink signal at a downlink reception entity in a wireless communication system. Downlink control information is received by demodulating a Physical Downlink Control Channel (PDCCH) in a first resource block (RB) pair within an RB bundle by using a first Demodulation Reference Signal (DMRS). Downlink data is received by demodulating a Physical Downlink Shared Channel (PDSCH) in one or more second RB pairs scheduled by the downlink control information within the RB bundle by using a second DMRS based on an assumption that a same precoder is applied to the scheduled one or more second RB pairs.
Abstract:
A method and a user equipment (UE) configured with one or more cells for feeding back channel information are discussed. The method according to an embodiment includes receiving information on a maximum number of ranks; transmitting first channel information generated based on rank information; and transmitting second channel information which is generated based on the same rank information as the rank information used for generating the first channel information. The maximum number of ranks is used to determine the rank information.
Abstract:
Provided is a data receiving method in a wireless communication system and a wireless device using the same. A wireless device monitors a downlink control channel, and receives a downlink reference signal to be used in a demodulation of a downlink transmission block based on the resource to be used in the monitoring the downlink control channel.
Abstract:
A method for feeding back channel information, and a user equipment (UE) therefore are discussed. The method according to one embodiment includes, if one or more cells are configured, performing a first feedback process and a second feeding process. The first feedback process is configured to transmit first channel information including rank information. The second feedback process is configured to transmit second channel information generated based on the same rank information as the rank information of the first feedback process.