摘要:
A method for fabricating an implantable medical electrode includes roughening the electrode substrate, applying an adhesion layer, and depositing a valve metal oxide coating over the adhesion layer under conditions optimized to minimize electrode impedance and post-pulse polarization. The electrode substrate may be a variety of electrode metals or alloys including titanium, platinum, platinum-iridium, or niobium. The adhesion layer may be formed of titanium or zirconium. The valve metal oxide coating is a ruthenium oxide coating sputtered onto the adhesion layer under controlled target power, sputtering pressure, and sputter gas ratio setting optimized to minimize electrode impedance and post-pulse polarization.
摘要:
A method for fabricating an implantable medical electrode includes roughening the electrode substrate, applying an adhesion layer, and depositing a valve metal oxide coating over the adhesion layer under conditions optimized to minimize electrode impedance and post-pulse polarization. The electrode substrate may be a variety of electrode metals or alloys including titanium, platinum, platinum-iridium, or niobium. The adhesion layer may be formed of titanium or zirconium. The valve metal oxide coating is a ruthenium oxide coating sputtered onto the adhesion layer under controlled target power, sputtering pressure, and sputter gas ratio setting optimized to minimize electrode impedance and post-pulse polarization.
摘要:
The present invention relates generally to medical devices; in particular and without limitation, to unique electrodes and/or electrical lead assemblies for stimulating cardiac tissue, muscle tissue, neurological tissue, brain tissue and/or organ tissue; to electrophysiology mapping and ablation catheters for monitoring and selectively altering physiologic conduction pathways; and, wherein said electrodes, lead assemblies and catheters optionally include fluid irrigation conduit(s) for providing therapeutic and/or performance enhancing materials to adjacent biological tissue, and wherein each said device is coupled to or incorporates nanostructure or materials therein. The present invention also provides methods for fabricating, deploying, and operating such medical devices.
摘要:
An insulative housing formed about a distal end of a medical electrical lead body includes a cavity and a port; an ionically conductive medium fills the cavity and is in intimate contact with an electrode surface contained within the cavity. When a current is delivered to the electrode surface contained within the cavity, a first current density generated at the electrode surface is smaller than a second current density generated out from the port of the insulative housing; thus, the port forms a high impedance and low polarization tissue-stimulating electrode.
摘要:
An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.
摘要:
Various techniques for delivering atrial pacing and supraventricular stimulation to achieve a desired ventricular rate and/or cardiac output are described. One example method described includes delivering a pacing signal configured to cause an atrial depolarization to a heart of a patient, wherein the atrial depolarization results in an associated refractory period during the cardiac cycle, and delivering a signal to a supraventricular portion of the heart of the patient subsequent to the atrial refractory period and during a ventricular refractory period of the cardiac cycle.
摘要:
The present invention relates generally to medical devices; in particular and without limitation, to unique electrodes and/or electrical lead assemblies for stimulating cardiac tissue, muscle tissue, neurological tissue, brain tissue and/or organ tissue; to electrophysiology mapping and ablation catheters for monitoring and selectively altering physiologic conduction pathways; and, wherein said electrodes, lead assemblies and catheters optionally include fluid irrigation conduit(s) for providing therapeutic and/or performance enhancing materials to adjacent biological tissue, and wherein each said device is coupled to or incorporates nanotube structures or materials therein. The present invention also provides methods for fabricating, deploying, and operating such medical devices.
摘要:
A pacing lead includes a first pacing cathode coupled to a first conductor, a second pacing cathode coupled to a second conductor, and a flexible anode coupled to a third conductor. The flexible anode has a length less than approximately 10 millimeters and is spaced apart from and proximal to the first pacing cathode and spaced apart from and distal to the second pacing cathode. The spacing between the anode and the first pacing cathode is approximately equal to the spacing between the anode and the second pacing cathode.
摘要:
A medical electrical lead having an elongated insulative sheath carrying an elongated electrical conductor therein and having a drug-dispensing electrode assembly coupled to a distal end of the elongated conductor. The electrode assembly takes the form of a conductive electrode member having a distal electrode portion exposed exterior to the elongated sheath and a shank portion extending proximally from the distal portion and coupled to the elongated conductor. A drug release device is mounted around the shank proximal to the distal portion of the electrode member and the electrode member is provided with at least one bore extending from a surface of the release device to a surface of the distal portion of the electrode member.
摘要:
An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.