Abstract:
The invention relates to a rotor comprising a radiation source having a focal spot for radiating beam towards a subject, detection means for generating signals responsive to energy attenuation of said beam and a circular body having a cavity for housing the radiation source, and a circle arc-shaped surface on which the detection means are mounted. The circle arc-shaped surface is placed opposite to the cavity with respect to the subject, said cavity comprising an inside surface mounted with a shield for shielding the radiation not towards the subject. In this way, the conventional housing for radiation source and shielding are removed, resulting in reduction of focal spot motion caused by motion of the conventional housing. Furthermore, this invention proposes to mount the detection means directly on the circular body without an intermediate structural housing that reduces the detector modules motion relative to the focal spot.
Abstract:
By providing a pair of vacuum manifolds positioned on opposite sides of an envelope travel path with the vacuum manifolds being laterally spaced apart, a unique, effective and dependable envelope handling system is achieved whereby the envelope sides are consistently separated and the contents removed therefrom and positioned in a readily accessible channel. Preferably, the envelope handling system also incorporates sensing devices for automatically and separately inspecting each side of the envelope to determine the presence of additional material which should be processed. In this way, any such material is automatically discovered for handling by the operator.
Abstract:
By providing a pair of vacuum manifolds positioned on opposite sides of an envelope travel path with the vacuum manifolds being laterally spaced apart, a unique, effective and dependable envelope handling system is achieved whereby the envelope sides are consistently separated and the contents removed therefrom and positioned in a readily accessible channel. Preferably, the envelope handling system also incorporates a sensor for automatically and separately inspecting each side of the envelope to determine the presence of additional material which should be processed. In this way, any such material is automatically discovered for handling by the operator.
Abstract:
An x-ray tube includes an anode (A) and an envelope (C). A cathode assembly (B) which is supported in the envelope on a bearing (32) emits a beam of electrons which strike the anode forming a focal spot. The anode rotates (D) relative to the cathode such that focal spot follows a generally annular path along a beveled track (14). If the axis of the anode and the cathode assembly are screwed or offset, the focal spot path is not circular and wobbles. An adjustment assembly (60) adjusts the relative positions of the anode, the cathode and the envelope to adjust the anode and cathode assembly axes. The adjustment assembly also includes one or more electrodes (102, 108) which adjust the position of the focal spot. An angular position encoder (106) identifies an angular orientation of the anode. A control circuit (110) applies an electrostatic potential to the electrodes to move the focal spot such that it stays on a constant plane of the leveled anode surface.
Abstract:
A high frequency voltage generator (10) produces a high positive voltage and a high negative voltage. A parallel connected coil (26) and diode (30) are connected between the high voltage supply and a target (44) of an x-ray tube (40). A second parallel connected coil (28) and diode (32) are connected between the negative voltage and an electron source (42) of the x-ray tube. The coils are preferably a multiple pancake design (FIG. 3 ). When the tube starts to arc, the sudden increase in current flow through the coil is converted and stored in a magnetic field leaving only a small current to contribute to arcing. The coils are sized such that the current which passes to the x-ray tube is sufficiently small that the arcing is usually extinguished without an avalanche phenomenon occurring. The diodes permit the energy stored in the magnetic field to be converted into a current flow through the coil and diode such that the energy is dissipated as heat by the inherent electrical resistance of the coil with only a minimal amount of the energy passing over time to the x-ray tube.
Abstract:
A medical imaging system includes an x-ray source (112) having a focal spot that emits radiation that traverses an examination region (108). The position of the focal spot along a longitudinal direction is a function of a temperature of one or more x-ray source components. The system further includes a detector (120) that detects the radiation and a collimator (116), disposed between the x-ray source (112) and the examination region (108), that collimates that radiation along the longitudinal direction. A focal spot position estimator (132) dynamically computes an estimated position of the focal spot along the longitudinal direction based on the temperature of one or more x-ray source components. A collimator positioner (128) positions the collimator (116) along the longitudinal direction based on the estimated focal spot position prior to performing a scan.
Abstract:
A propulsion system for a watercraft including a motor and a drive connected to the motor. At least one belt is carried by the drive. The belt includes at least one paddle extending outwardly from the belt.
Abstract:
A toroidal x-ray tube housing (A) is composed of multiple sections which are clamped together and sealed by elastomeric gaskets (128). An annular anode (B) is mounted to the housing with coolant passages (12, 14) extending thereadjacent. A rotor (30) is rotated within the toroidal housing by a motor (60). At least one cathode assembly (C) is mounted to the rotor adjacent the anode. The rotor is supported by magnetic bearings (40) whose active coils are separated from the vacuum region by a magnetic window (48). Alternately, a series of vanes (136, 138) are provided to divide the vacuum chamber into a high vacuum region (132) adjacent the cathode and anode and a low vacuum region (134) adjacent the motor (60) and bearings (40, 150, 152) for rotatably supporting the rotor within the housing. An active vacuum pump, preferably a ion pump (112) and a getter (114) are hermetically sealed into the vacuum region for maintaining the vacuum.
Abstract:
An x-ray tube includes an anode (A) and envelope (C) which are rotated (D) at a relatively high rate of speed. A cathode assembly (B) is supported in the envelope on a bearing (32). In order to hold the cathode assembly stationary, a magnetic susceptor (40) having periodic projections (44) is disposed with the projections closely adjacent an outer peripheral wall (20) of the envelope. A plurality of permanent magnets (52) are mounted on a stationary keeper (50), each magnet adjacent one of the susceptor projections. Preferably, the magnets have alternating polarity such that magnetic flux lines (54) flow between adjacent magnets through the magnetic susceptor.
Abstract:
A medical imaging system includes an x-ray source (112) having a focal spot that emits radiation that traverses a examination region (108). The position of the focal spot along a longitudinal direction is a function of a temperature of one or more x-ray source components. The system further includes a detector (120) that detects the radiation and a collimator (116), disposed between the x-ray source (112) and the examination region (108), that collimates that radiation along the longitudinal direction. A focal spot position estimator (132) dynamically computes an estimated position of the focal spot along the longitudinal direction based on the temperature of one or more x-ray source components. A collimator positioner (128) positions the collimator (116) along the longitudinal direction based on the estimated focal spot position prior to performing a scan.