Abstract:
A static mixer in the exhaust emission control system of an excess-air-operated combustion engine is formed of an expanded grid with a plurality of openings formed between crossbars. Using an expanded grid achieves both good mixing of the exhaust gas with a reducing agent in a short mixing path and properly aligns the exhaust flow.
Abstract:
A static mixer in the exhaust emission control system of an excess-air-operated combustion engine is formed of an expanded grid with a plurality of openings formed between crossbars. Using an expanded grid achieves both good mixing of the exhaust gas with a reducing agent in a short mixing path and properly aligns the exhaust flow.
Abstract:
A premixing chamber of a nebulizing device for an exhaust gas purification system serves to mix a compressed gas such as compressed air, for example, with a reducing agent such as urea solution, for example. The premixing chamber is set up on the carburetor principle and includes a compressed gas feed having a taper and a reducing agent feed opening in the region of the taper. The premixing chamber ensures that no deposits originating from the reducing agent can settle in the region of the mixing route. The premixing chamber is provided, in particular, for an exhaust gas purification system of a vehicle fitted with a regulated diesel catalytic converter as well as for stationary diesel engines of up to about 1000 kW (mechanical power).
Abstract:
A configuration for decomposing nitrogen oxides in a gas stream includes a plurality of catalytic converters disposed one after the other through which the gas stream can flow. Each of the catalytic converters has a honeycomb structure with many parallel cells through which the gas stream can flow. Each of the catalytic converters also has a predetermined cell density and a predetermined average level of activity defined as a proportion by weight of the catalytically active agent. The predetermined cell density of a second catalytic converter through which the gas stream flows after a first catalytic converter is lower than the predetermined cell density of the first catalytic converter. The predetermined average level of activity of the second catalytic converter is also higher than the predetermined average level of activity of the first catalytic converter. The configuration is preferably used in conjunction with an exhaust gas from a combustion drive unit.
Abstract:
Exhaust gas to be cleaned is introduced into a conversion and mixing duct and the exhaust gas flows through the duct along a predetermined longitudinal direction. A reducing agent, such as aqueous urea solution, is injected into the exhaust gas stream in the conversion and mixing duct. The exhaust gas stream is then deflected into a reaction duct which extends parallel to or coaxially around the conversion and mixing duct. The exhaust gas then flows in the opposite direction through the reaction duct. A reduction catalyst is disposed in the reaction duct, where the reducible components of the exhaust gas are reduced. The exhaust gas cleaned in this manner is then discharged from the reaction duct.
Abstract:
The method and the device are configured for the catalytic removal of a pollutant contained in an exhaust gas of a combustion system using a reagent. A temporal mean, or time average, is formed for the concentration of the pollutant in the exhaust gas. The catalytic converter is laid out for complete conversion if the reagent is introduced stoichiometrically. Here, the reagent is introduced in substoichiometric proportions with respect to the time average of the pollutant content.
Abstract:
Nitrogen oxides emitted by an internal-combustion engine operated with excess air are normally converted by the method of selective catalytic reduction by bringing the nitrogen oxides, together with ammonia, into contact with a selective catalyst. Due to the dangers associated with the use of ammonia, in a motor vehicle ammonia should only be carried in the form of a substance which liberates ammonia, generally an aqueous urea solution. A method and a device for introducing liquid into an exhaust-gas purification system according to the invention avoids frost damage to sections of the system during shutdown times and permits operation of the system at temperatures below the freezing point of the reducing agent solution being used. The method and device include a (thermally insulated) reservoir for the reducing agent liquid and a liquid supply line which is connected thereto and terminates in an outlet opening for the liquid. The reservoir and the liquid supply line can be heated. Furthermore, a heater is provided for liquefying a starting volume which is small as compared with the volume of the reservoir. The liquid supply line may also have a back-flush valve to which a gas that is under pressure can be applied. The supply line can consequently be blown free.
Abstract:
A method and a device for controlling a combustion system, in particular an internal combustion engine, and for catalytic cleaning of exhaust gases, as well as a combustion system, catalytically remove a noxious substance from the exhaust gas with the aid of a fluid which is added in a metered manner to the noxious substance. A desired value for a mass flow of the noxious substance in the exhaust gas is prescribed in order to control the combustion system. In this way, the metered addition of the fluid in accordance with the mass flow of the noxious substance is substantially simplified.
Abstract:
A NO.sub.x reduction system includes an SCR catalytic converter and a metering assembly for reducing agent. A control unit for the reduction system is integrated together with the actuators and sensors as a functional unit at the reducing agent container. This provides savings in terms of lines and plug-in connections, and relieves the burden on the control unit of the internal combustion engine.
Abstract:
Exhaust gas to be cleaned is introduced into a conversion and mixing duct and the exhaust gas flows through the duct along a predetermined longitudinal direction. A reducing agent, such as aqueous urea solution, is injected into the exhaust gas stream in the conversion and mixing duct. The exhaust gas stream is then deflected into a reaction duct which extends parallel to or coaxially around the conversion and mixing duct. The exhaust gas then flows in the opposite direction through the reaction duct. A reduction catalyst is disposed in the reaction duct, where the reducible components of the exhaust gas are reduced. The exhaust gas cleaned in this manner is then discharged from the reaction duct.