Abstract:
The present invention provides improved MEMS devices and methods for use with fiber-optic communications systems. In one embodiment, an apparatus for steering light has a beam layer (160) with a reflective surface. The device uses a multi-layer electrode stack underlying the beam layer to rotate the beam layer into a desired position. Additionally, an underlying rotation and support structure provides a stable platform for the beam layer when the device is activated. In one embodiment, the underlying structure provides a multi-point landing system to maintain a generally flat beam layer upper surface when the device is activated.
Abstract:
Provided is a movable micromirror assembly wherein a mirror is mounted on, e.g. four flexible support arms, which are mounted in turn on a center support post. The post and arms resiliently support such mirror over, e.g. four address electrodes. The micromirror device is actuated like a parallel-plate capacitor by applying an address potential to the electrodes, which draw a part or all of the mirror toward same, countered by the spring force of the proximate support arms. Motion of the micromirror can be achieved along two axes since the device can be tilted and retracted according to the varying potentials applied to each of the four electrodes and the attractive force applied in turn to various portions of the micromirror in spaced proximity therewith. The support system of the micromirror is positioned beneath the mirror so that no reflective service area is lost to these features. Accordingly individual micromirror assemblies can be placed close to each other, in side by side array, to maximize the active surface area of such array. Thus each such micromirror can be tilted on two axes to scan one or more fields of regard and also can simultaneously be retracted or elevated to a desired depth to remove phase aberrations in the incident image by discreetly lengthening or shortening the optical path of the image reflected therefrom.
Abstract:
Post-process deposition of selected material onto MEMS devices is facilitated by photolithographically incorporating deposition shields during the device fabrication process. Subsequently, simple sputtering or evaporating deposition machines can be used to selectively deposit desired materials onto the MEMS devices.
Abstract:
Large quantities of test MEMS devices are fabricated on a single chip with underlying addressable wiring connections. The wiring contains gaps that can be selectively shorted using a post-process metallization process. Deposition shields are photolithographically incorporated into the MEMS devices during the device fabrication process. These shields contain selected small gaps over certain unconnected wires. Subsequently, simple sputtering or evaporating deposition is used to deposit conductive materials onto the MEMS devices, thereby shorting the unconnected wires. Large quantities of devices can be shorted to active address wires by the metallization process in order of decreasing address potential or by testing preference. As a result, far more devices on a single chip can be individually tested and actuated than the number of bond pads that can be placed around the edge of the chip.
Abstract:
The present invention provides improved MEMS devices and methods for use with fiber-optic communications systems. In one embodiment, an apparatus for steering light has a beam layer (160) with a reflective surface. The device uses a multi-layer electrode stack underlying the beam layer to rotate the beam layer into a desired position. Additionally, an underlying rotation and support structure provides a stable platform for the beam layer when the device is activated. In one embodiment, the underlying structure provides a multi-point landing system to maintain a generally flat beam layer upper surface when the device is activated.
Abstract:
An array of micromirror devices is fabricated using standard surface-micromachining techniques such that the reflective mirror surfaces are anchored by a trapped joint rather than by rigid support flexures. These devices are therefore multi-stable in actuation rather than continuous like typical micromirror devices in which the restoring spring force of the flexures is used to balance the force of electrostatic actuation. As a result, the flexureless micromirror can be actuated to specific stable positions that make it ideal for optical switching. Since no direct mechanical connection is required to support the mirror surfaces, these devices can be switched between stable positions in binary fashion and at higher speeds.