Abstract:
Electric scissors comprise a motor, a movable blade, a transmission mechanism, an operation device, an operation signal output device, a control device, a drive circuit, and a forced stop device. The forced stop device is configured to stop the motor when an abnormal state is present in which the value of the operation signal output from the operation signal output device is a value determined in the control device to rotate the motor in a specific rotation direction out of the first and the second rotation directions or to stop the motor, and in which the motor is rotating in a direction opposite to the specific rotation direction.
Abstract:
A rotary tool includes a motor having an axis of rotation extending in a forward-rearward direction of the rotary tool. A grip part is located below the axis of rotation in an up-down direction that is perpendicular to the forward-rearward direction. A planet gear is configured to be driven by the motor. An internal gear meshes with the planet gear and is movable in the forward-rearward direction to change a speed. A sun gear meshes with the planet gear, and an output shaft is configured to be rotationally driven by the sun gear. A sensor is configured to detect the forward-rearward movement of the internal gear, the sensor being disposed downward of the sun gear in the up-down direction.
Abstract:
A hand-held power tool includes a motor having a stator and a rotor, the motor being configured to rotate the rotor at a speed of at least 40,000 rpm, an output shaft directly driven by the rotor, a tool accessory shaft configured to support a tool accessory, and a two-stage speed reducing transmission operably connecting the output shaft to the tool accessory shaft. The two-stage speed reducing transmission is configured to drive the tool accessory shaft at a rate less than the rotor speed, for example, at a rate less than or equal to 37.5% of the rotor speed.
Abstract:
An electric working machine of one aspect of the present disclosure includes a connection port, a control circuit, and/or a power supply switch. The power supply switch is provided on a power supply path extending from a battery pack connected to the connection port to the control circuit. The power supply switch maintains an ON state while a power supply permission signal is output from the battery pack to the electric working machine. The control circuit outputs an ON-command signal to the power supply switch for a specified period of time in response to loss of the power supply permission signal from the battery pack.
Abstract:
A motor driven appliance comprises a battery, a motor, at least one switch, a control unit, an abnormality detection unit, a determination unit, and a processing unit. The at least one switch comprises an operation switch. The control unit controls driving of the motor by controlling power supply from the battery to the motor when the operation switch is turned on. The abnormality detection unit detects abnormality of the appliance. The determination unit determines whether the detected abnormality is a first type abnormality that can be cleared when the operation switch is switched from on to off, or is a second type abnormality that cannot be cleared even if the operation switch is merely switched from on to off. The processing unit is configured to perform a specific process when it is determined that the detected abnormality is the second type abnormality.
Abstract:
A power tool including a brushless motor having a sensor circuit board has higher durability. The power tool includes a housing, a brushless motor including a rotor having a rotational shaft, a stator, and a sensor circuit board fixed to the stator and having a rotation detecting element that detects rotation of the rotor, and receiving the rotational shaft through the sensor circuit board, and a bearing held in the housing and supporting the rotational shaft. The bearing is located to overlap the rotation detecting element in an axial direction of the rotational shaft.
Abstract:
A motor driven appliance in one aspect of embodiments of the present disclosure comprises a light source, a lighting unit, a motor, an operation unit, an operation detector, a reference signal output unit, a determination unit, and a control unit. The operation detector detects that the operation unit is operated, and outputs an operation detection signal that indicates that the operation unit is operated. The reference signal output unit outputs at least one reference signal that can be used as a reference for determining whether the detection by the operation detector is normal. The determination unit determines whether the operation unit is actually operated based on the operation detection signal and the at least one reference signal. The control unit controls operation of the lighting unit based on the determination made by the determination unit.
Abstract:
In a motor control circuit, a switching element such as an FET for controlling a motor current and a current detection element for detecting the motor current are connected in series. One terminal of a temperature detection element is electrically connected to an electrical connecting section between the FET and the current detection element, and the other terminal of the temperature detection element is electrically connected to a temperature detection circuit.
Abstract:
A power tool according to one aspect of one embodiment described in the disclosure includes a brushless motor, a battery voltage detection unit configured to detect a voltage of a battery that provides energy for driving the brushless motor, a rotational position detection unit configured to detect a rotational position of the brushless motor, and a control unit configured to control a drive output supplied to the brushless motor based at least in part on a signal from the rotational position detection unit. The control unit controls a current conduction angle and/or an advance angle supplied to the brushless motor so that, during control of the drive output to the brushless motor, a rotational speed or a conducting current of the brushless motor approaches or reaches a target value, the target value being based at least in part on a battery voltage detected by the battery voltage detection unit.
Abstract:
An electric power tool according to the present invention is provided with a tool main body, an induction motor, a power supply unit, and an inverter. The power supply unit and the inverter are integrally incorporated in the tool main body together with the induction motor.