Abstract:
A video processing apparatus includes a video encoding circuit and a post-processing circuit. The video encoding circuit receives a first source data, and encodes the first source data to generate a first bitstream, wherein the first source data includes a first source luminance channel data and a first source chrominance channel data, and the first bitstream includes a first compressed luminance channel data and a first compressed chrominance channel data. The post-processing circuit derives an auxiliary compressed chrominance channel data from an auxiliary input, and generates and outputs an output bitstream that includes the first compressed luminance channel data and the auxiliary compressed chrominance channel data.
Abstract:
A video compression system includes a video encoder and a bitstream processing circuit. The video encoder is hardware that performs hardware video encoding upon frames to generate a first bitstream. The first bitstream is output from an entropy encoding circuit of the video encoder. The bitstream processing circuit performs a bitstream post-processing operation upon the first bitstream to produce a second bitstream that is different from the first bitstream, and outputs the second bitstream as a compression output of the frames.
Abstract:
A perception-based image processing apparatus includes an image analyzing circuit and an application circuit. The image analyzing circuit obtains training data, sets a perception model according to the training data, performs an object detection of at least one frame, and generates an object detection information signal based at least partly on a result of the object detection of said at least one frame. The application circuit operates in response to the object detection information signal.
Abstract:
An image processing method includes: combining a padding region with a picture, wherein any padding pixel included in the padding region is assigned with a predetermined pixel value; and encoding the picture having the padding region combined therewith. For example, the padding region is directly below a bottom edge of the picture. For another example, all of padding pixels included in the padding region have the same pixel value.
Abstract:
Aspects of the disclosure provide a method for merging compressed access units according to compression rates and/or positions of the respective compressed access units. The method can include receiving a sequence of compressed access units corresponding to a sequence of raw access units partitioned from an image or a video frame and corresponding to a sequence of memory spaces in a frame buffer, determining a merged access unit including at least two consecutive compressed access units based on compression rates and/or positions of the sequence of compressed access units. The merged access unit is to be stored in the frame buffer with a reduced gap between the at least two consecutive compressed access units compared with storing the at least two consecutive compressed access units in corresponding memory spaces in the sequence of memory spaces.
Abstract:
A method and apparatus of coding using multiple coding modes with multiple color spaces are provided. For the encoder side, a coding mode is selected from a coding mode group. A corresponding color domain is associated with the coding mode and the corresponding color domain is selected from a color-domain group including at least two different color domains. The current coding unit is then encoded in the corresponding color domain using the coding mode. Furthermore, the syntax of the corresponding color domain is signaled in current coding unit syntaxes. The different color domains may include RGB color domain and YCoCg color domain. According to another method, if the midpoint prediction (MPP) mode is selected, a current block is color transformed into another color domain and the MPP coding process is performed in said another color domain.
Abstract:
A video encoding apparatus has a bitstream buffer and a first video encoder. The first video encoder sequentially encodes coding blocks of a first video frame segment in a first encoding order, and outputs encoded data of the coding blocks of the first video frame segment to the bitstream buffer. The first video frame segment is partitioned into a plurality of column tiles, each having at least one tile. The first encoding order is identical to an encoding order of encoding a video frame segment with only a single column tile.
Abstract:
An entropy encoder includes an entropy encoding circuit and a size determining circuit. The entropy encoding circuit receives symbols of a pixel group, and entropy encodes data derived from the symbols of the pixel group to generate a bitstream segment which is composed of a first bitstream portion and a second bitstream portion. The first bitstream portion contains encoded magnitude data of the symbols of the pixel group, and the second bitstream portion contains encoded sign data of at least a portion of the symbols of the pixel group. The size determining circuit determines a size of a bitstream portion, wherein the bitstream portion comprises at least one of the first bitstream portion and the second bitstream portion.
Abstract:
An image compression method includes at least the following steps: receiving a plurality of pixels of a frame, wherein pixel data of each pixel has a plurality of color channel data corresponding to a plurality of different color channels, respectively; encoding the pixel data of each pixel and generating bit-streams corresponding to the plurality of color channel data of the pixel, wherein the bit-streams corresponding to the plurality of color channel data of the pixel are separated; packing bit-streams of a same color channel data of different pixels into color channel bit-stream segments, wherein each of the bit-stream segments has a same predetermined size; and concatenating color channel bit-stream segments of the different color channels into a final bit-stream. Alternatively, color channel bit-stream segments of the same pixel are concatenated into a concatenated bit-stream portion, and concatenated bit-stream portions of different pixels are concatenated into a final bit-stream.
Abstract:
An image encoding method includes at least following steps: receiving a plurality of target pixels within a frame, wherein pixel data of each target pixel has at least one color channel data corresponding to at least one color channel; determining a bit budget of the target pixels; and performing bit-plane scanning coding upon selected pixels according to the bit budget and a scanning order, and accordingly generating encoded pixel data of the selected pixels as encoded data of the target pixels, wherein the selected pixels are derived from the target pixels, and the bit-plane scanning coding extracts partial bits of pixel data of each selected pixel as encoded pixel data of the selected pixel. In addition, a corresponding image decoding method is provided.