Abstract:
An electrically erasable programmable read only memory (EEPROM) cell may include a substrate including at least one active region, a floating gate adjacent the substrate, a write/erase gate defining a write/erase path for performing high voltage write and erase operations, and a read gate defining a read path for performing low voltage read operations, wherein the read path is distinct from the write/erase path. This allows for a smaller read gate oxide, thus allowing the cell size to be reduced. Further, the EEPROM cell may include two independently controllable read gates, thereby defining two independent transistors which allows better programming voltage isolation. This allows the memory array to be drawn using a common source instead of each column of EEPROM cells needing its own source line. This makes the array more scalable because the cell x-dimension would otherwise be limited by each column needing two metal 1 pitches.
Abstract:
By arranging both a conductive and non-conductive resistive memory cell in a cross coupled arrangement to facilitate reading a data state the memory cells can have very small differences in their resistance values and still read correctly. This allows both of the memory cells' resistances to change over time and still have enough difference between their resistances to read the desired data state that was programmed. A pair of ReRAM or CBRAM resistive memory devices are configured as a one bit memory cell and used to store a single data bit wherein one of the resistive memory devices is in an ERASE condition and the other resistive memory devices of the pair is in a WRITE condition. Reading the resistance states of the resistive memory device pairs is accomplished without having to use a reference voltage or current since a trip-point is between the conductive states thereof.
Abstract:
A memory array includes (a) multiple memory cells arranged into a plurality of bytes, (b) a separate word line connected to each byte, and (b) multiple shared source lines, each connected to at least two bytes, such that each byte in the array is addressable by a separate word line and by the shared source line. Due to this memory array architecture, a program operation on a first byte applies a shared source line voltage on a non-selected second byte (with an inhibit voltage applied to bit lines connected to the second byte), which creates a disturb condition that corresponds with a diagonal (or row) program disturb condition in a conventional memory array. The use of the shared source lines may reduce the required number of source line drivers, which reduces the overhead area of the memory array, and at same time, allow backward compatibility of traditional byte-alterable EEPROM.
Abstract:
A memory array includes (a) multiple memory cells arranged into a plurality of bytes, (b) a separate word line connected to each byte, and (b) multiple shared source lines, each connected to at least two bytes, such that each byte in the array is addressable by a separate word line and by the shared source line. Due to this memory array architecture, a program operation on a first byte applies a shared source line voltage on a non-selected second byte (with an inhibit voltage applied to bit lines connected to the second byte), which creates a disturb condition that corresponds with a diagonal (or row) program disturb condition in a conventional memory array. The use of the shared source lines may reduce the required number of source line drivers, which reduces the overhead area of the memory array, and at same time, allow backward compatibility of traditional byte-alterable EEPROM.
Abstract:
By arranging both a conductive and non-conductive resistive memory cell in a cross coupled arrangement to facilitate reading a data state the memory cells can have very small differences in their resistance values and still read correctly. This allows both of the memory cells' resistances to change over time and still have enough difference between their resistances to read the desired data state that was programmed. A pair of ReRAM or CBRAM resistive memory devices are configured as a one bit memory cell and used to store a single data bit wherein one of the resistive memory devices is in an ERASE condition and the other resistive memory devices of the pair is in a WRITE condition. Reading the resistance states of the resistive memory device pairs is accomplished without having to use a reference voltage or current since a trip-point is between the conductive states thereof.
Abstract:
An electrically erasable programmable read only memory (EEPROM) cell may include a substrate including at least one active region, a floating gate adjacent the substrate, a write/erase gate defining a write/erase path for performing high voltage write and erase operations, and a read gate defining a read path for performing low voltage read operations, wherein the read path is distinct from the write/erase path. This allows for a smaller read gate oxide, thus allowing the cell size to be reduced. Further, the EEPROM cell may include two independently controllable read gates, thereby defining two independent transistors which allows better programming voltage isolation. This allows the memory array to be drawn using a common source instead of each column of EEPROM cells needing its own source line. This makes the array more scalable because the cell x-dimension would otherwise be limited by each column needing two metal 1 pitches.