Abstract:
The present invention provides a method for forming an optical waveguide characterized by applying a paste containing a copper compound to a glass substrate containing an alkali metal as a glass component over the whole surface thereof or in a patterned form, and performing heat treatment at a temperature lower than the softening temperature of the glass substrate. The method of the invention can produce an optical waveguide without the need for a high vacuum as in the thin film deposition method and without the use of a molten salt, and is capable of dispersing Cu+ ions selectively in a glass substrate with excellent controllability.
Abstract:
An injection stretch blow molding apparatus has a preform molding section for molding preforms and a blow molding section for blow molding containers from the preforms retaining heat from when the preforms were injection molded. At a location in a path along which the preforms are carried from the preform molding section to the blow molding section there is a discharge guide section for guiding preforms which are not to be carried to the blow molding section off the carrying path. A method wherein preforms are injection molded in preform molding section and these preforms are carried to a blow molding section and containers are blow molded from the preforms retaining heat from when the preforms were injection molded, includes the steps of switching to either a container molding operating mode using the above steps or a preform molding operation mode wherein part way along the preform carrying path leading to the blow molding section, the preforms being molded in the preform molding section are discharged from the carrying path.
Abstract:
An injection stretch blow molding method sequentially circulates a plurality of neck mold moving units for supporting and conveying neck molds adapted to hold the neck portions of hollow containers and preforms used to mold the hollow containers at least through preform injection molding, blow molding and ejecting stations, the preform injection molding step, the blow molding step for blow molding the hollow containers from the preforms having their potential heat provided by the injection molding step and the product ejecting step being repeatedly carried out. The injection molding stations of M in number are provided for blow molding stations of N in number (M>N.gtoreq.1). Preforms are injection molded in each of the injection molding stations at an injection molding start time staggered from those of the other injection molding stations by time equal to N.times.T/M where T is an injection molding cycle time in each of the injection molding stations. The neck mold moving units are sequentially moved from the injection molding stations to the empty blow molding station after the respective one of the injection molding stations has molded the preforms. The preforms are blow molded into the hollow containers in the blow molding stations through their blow molding cycle time which is set within N.times.T/M.
Abstract:
Disclosed is an improved wheel for a vehicle of the type having an annular rim adapted to carry a tire thereon and a wheel center, the annular rim being press fitted onto the outer peripheral part of said wheel center, the improvement consisting in that the annular rim and the wheel center are connected to one another with the aid of a layer of adhesive agent which is distributed in such a manner that its thickness assumes the maximum value at the central part of the cross-sectional configuration and decreases toward both the side edge parts of the wheel in the transverse direction. The maximum thickness of the layer of adhesive agent is determined in the range of 0.05 to 0.5 mm. The annular rim is firmly connected to the outer peripheral part of the wheel center by means of the layer of adhesive agent without any necessity for welding or the like operation so that the wheel has a good appearance. Epoxy resin based adhesive agent is preferably used for the wheel.
Abstract:
The present invention provides a method of producing an optical element without the need for high vacuum, unlike the thin film deposition methods, and without using a molten salt. More specifically, the invention provides a method of producing an optical element comprising applying a paste containing at least one compound selected from lithium compounds, potassium compounds, rubidium compounds, cesium compounds, silver compounds, and thallium compounds, an organic resin, and an organic solvent to a glass substrate containing an alkali metal component as a glass component and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
Abstract:
The present invention provides a method of producing a graded refractive index optical element, the method being capable of easily forming a graded refractive index distribution in a desired portion of a glass substrate without the need for a specific treatment atmosphere, and without using a molten salt. More specifically, the present invention provides a method of producing a graded refractive index optical element comprising applying a paste containing a copper compound, an organic resin and an organic solvent to a glass substrate containing an alkali metal component as a glass component, and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
Abstract:
In an injection stretch blow molding method, at least one injection molded preform is transferred from a preform molding section to a blow molding section by way of a transfer section and the at least one preform is blow molded into at least one container in the blow molding section. In the preform molding section the at least one preform is injection molded in an upright state with an open neck section thereof facing upward. In the transfer section, the at least one upright preform is turned upside-down and transferred to the blow molding section in an inverted state. Then, the blow molding section blow molds at least one container from the at least one inverted preform.
Abstract:
A method for determining total chlorine amount present in a sample by mixing the sample with a benzidine indicator solution comprising a benzidine compound capable of forming a dye by a reaction with a chlorine, wherein the hue of the formed dye changes depending upon the mole ratio of the chlorine to benzidine compound and determining the total chlorine amount from the hue. A kit for practicing the method incudes the indicator and a color scale for the hues of the dye.
Abstract:
A member produced by powder forging which retains machinability and improved fatigue strength without having an increased hardness and can retain self conformability after fracture splitting; a powder mixture for powder forging; a process for producing a member by powder forging; and a fracture splitting connecting rod obtained from the member produced by powder forging. The member produced by powder forging is one obtained by preforming a powder mixture, subsequently sintering the preform, and forging the resultant sintered preform at a high temperature. The free-copper proportion in the sintered preform at the time when the forging is started is 10% or lower, and the member obtained through the forging has a composition containing, in terms of mass %, 0.2-0.4% C, 3-5% Cu, and up to 0.4% Mn (excluding 0), the remainder being iron and incidental impurities, and has a ferrite content of 40-90%.
Abstract:
An injection blow molding system includes an injection molding station (22), a first delivery section (24), a cooling station (26), a heating station (30), a second delivery section (32) and a plurality of blow molding stations (34). The station (22) simultaneously injection molds M rows of N preforms (36) arranged in a second direction (B) perpendicular to a first direction (A) in which the preforms (36) are carried. The first delivery section (24) removes the M rows of preforms (36) using a removing mechanism (102) in their upright state while decreasing the pitch in the rows. The preforms 36 are inverted with the column pitch changed by an inverting mechanism (104) before delivery to the cooling station in their inverted state. The cooling and heating stations (26), (30) cool and heat one row of N preforms (36) while parallel carrying them along a first carrying chain (200). The second delivery section (32) delivers the preforms (36) to two blow molding stations while in their inverted state. Each blow molding station (34) stretch blow molds the N/2 preforms into containers at the same time.