摘要:
To perform high-speed and highly accurate measurement by setting desired measuring conditions for each measuring object. In an alignment sensor of exposure apparatus, in the case of performing position measurement for a plurality of sample shots, measurement is performed by changing the measuring conditions, in response to a measuring axis direction, a mark or a layer whereupon a mark to be measured exists. At that time, for the measuring objects to be measured under the same measuring conditions, for example, a position in a Y axis direction and a position in an X axis direction, measurement is continuously performed. When the measuring condition is changed, a baseline value is remeasured. The changeable measuring conditions are wavelength of measuring light, use and selection of a retarder, NA and σ of an optical system, a light quantity of measuring light, illumination shape, signal processing algorithm, etc.
摘要:
To perform high-speed and highly accurate measurement by setting desired measuring conditions for each measuring object. In an alignment sensor of exposure apparatus, in the case of performing position measurement for a plurality of sample shots, measurement is performed by changing the measuring conditions, in response to a measuring axis direction, a mark or a layer whereupon a mark to be measured exists. At that time, for the measuring objects to be measured under the same measuring conditions, for example, a position in a Y axis direction and a position in an X axis direction, measurement is continuously performed. When the measuring condition is changed, a baseline value is remeasured. The changeable measuring conditions are wavelength of measuring light, use and selection of a retarder, NA and σ of an optical system, a light quantity of measuring light, illumination shape, signal processing algorithm, etc.
摘要:
To perform high-speed and highly accurate measurement by setting desired measuring conditions for each measuring object. In an alignment sensor of exposure apparatus, in the case of performing position measurement for a plurality of sample shots, measurement is performed by changing the measuring conditions, in response to a measuring axis direction, a mark or a layer whereupon a mark to be measured exists. At that time, for the measuring objects to be measured under the same measuring conditions, for example, a position in a Y axis direction and a position in an X axis direction, measurement is continuously performed. When the measuring condition is changed, a baseline value is remeasured. The changeable measuring conditions are wavelength of measuring light, use and selection of a retarder, NA and σ of an optical system, a light quantity of measuring light, illumination shape, signal processing algorithm, etc.
摘要:
A method of aligning each of a plurality of processing areas arranged on a substrate with a predetermined transfer position in a static coordinate system XY for defining a moving position of said substrate, a pattern of a mask being transferred to each of the plurality of processing areas, the method comprising the steps of: wherein each of the plurality of processing areas has a specific point and a plurality of marks for alignment arranged by a predetermined positional relationship with respect to said specific point; measuring coordinate positions of a predetermined number of marks selected from several processing areas of the plurality of processing areas on the static coordinate system XY; calculating a plurality of parameters in a model equation expressing the regularity of arrangement of the plurality of processing areas by performing a statistic calculation by use with the measured plurality of coordinate positions, arrangement coordinate values upon the design of the specific points of the several processing areas and relative arrangement coordinate values upon the design of the selected marks of the several processing areas with respect to corresponding the specific points on the several processing areas; and determining coordinate positions of respective said specific points of the plurality of processing areas on the static coordinate system XY by using the calculated parameters.
摘要:
A polyurethane resin is synthesized from a reaction mixture of at least one phosphorus compound, an epoxy compound, a polyisocyanate, a polyfunctional hydroxy compound, and optionally a chain extender. The polyurethane resin contains one phosphoric acid group or one residual group derived from phosphoric acid per 3,000 to about 200,000 number average molecular weight of the polyurethane resin. The weight average molecular weight of the polyurethane resin is from about 10,000 to about 250,000. A magnetic coating formulation is comprised of principally of magnetic particles and a binder. A magnetic recording media comprises a laminate as in the form of a magnetic layer composed principally of magnetic particles and a binder wherein at least a portion of the binder is the polyurethane resin. The substrate of the magnetic recording medium is a suitable polymer such as polyester, and the like. The utilization of the polyurethane resin containing a phosphorus compound therein results in excellent dispersion of the magnetic particles as well as exceptional durability.
摘要:
An electromagnetic relay is provided with a movable contact sloped at a prescribed angle relative to an attracted face of an armature and a fixed contact sloped at a prescribed angle relative to an attracting face of a core. In this electromagnetic relay, it is possible to contact the movable and fixed contacts slidingly each other even when the armature is attached so as to be in contact with a frame.
摘要:
A part of a plate of a predetermined shape detachably mounted on a moving body is detected by an alignment system while the position of the moving body is measured by a measurement unit that sets a movement coordinate system of the movement body, and based on the detection results and the measurement results of the measurement unit corresponding to the detection results, position information of an outer periphery edge of the plate is obtained. Therefore, even if there are no alignment marks on the moving body for position measurement, the position of the plate, or in other words, the position of the moving body can be controlled on the movement coordinate system set by the measurement unit, based on the position information of the outer periphery edge of the plate.
摘要:
A part of a plate of a predetermined shape detachably mounted on a moving body is detected by an alignment system while the position of the moving body is measured by a measurement unit that sets a movement coordinate system of the movement body, and based on the detection results and the measurement results of the measurement unit corresponding to the detection results, position information of an outer periphery edge of the plate is obtained. Therefore, even if there are no alignment marks on the moving body for position measurement, the position of the plate, or in other words, the position of the moving body can be controlled on the movement coordinate system set by the measurement unit, based on the position information of the outer periphery edge of the plate.
摘要:
An exposure apparatus includes a substrate stage movable while holding a substrate, a substrate alignment system which detects an alignment mark (1) on the substrate held by the substrate stage and detects a reference mark (PFM) provided on the substrate stage, and a mask alignment system which detects, via a projection optical system, a reference mark (MFM) provided on the substrate stage. The reference mark (PFM) on the substrate stage is detected without a liquid by using the substrate alignment system, and the reference mark (MFM) on the substrate stage is detected using the mask alignment system via the projection optical system and the liquid. Then, a positional relationship between a detection reference position of the substrate alignment system and a projection position of an image of a pattern is obtained, thereby accurately performing alignment processing in the liquid immersion exposure.
摘要:
A projection exposure method for exposing a substrate through a projection optical system with a predetermined pattern formed on a mask. The method includes the steps of calculating an amount of lateral variation of a pattern image in a direction perpendicular to an optical axis of the projection optical system, determining a distortion produced solely by the projection optical system, obtaining a total expected distortion by a summation of the distortion produced solely by the projection optical system and the calculated variation of the positions at which the image of the pattern of the mask is formed, and exposing the substrate while partially correcting the positions at which the image of the pattern of the mask is formed through the projection optical system based on the total expected distortion.