Abstract:
Due to the factors such as lens distortion and camera misalignment, stereoscopic image pairs often contain vertical disparities. Introduced herein is a method and apparatus that determine and correct vertical disparities in stereoscopic image pairs using an optical flow map. Instead of discarding vertical motion vectors of the optical flow map, the introduced concept extracts and analyzes the vertical motion vectors from the optical flow map and vertically aligns the images using the vertical disparity determined from the vertical motion vectors. The introduced concept recognizes that although not apparent, vertical motion does exist in stereoscopic images and can be used to correct the vertical disparity in stereoscopic images.
Abstract:
The disclosure is directed to a method to compensate for visual distortion when viewing video image streams from a multiple camera capture of a scene where the method determines the disparity difference utilizing the user view orientation and then compresses and/or stretches the left and/or right eye video image streams to compensate for the visual distortion. In another aspect, the method describes additional adjustments and corrections to the video image streams including rotating, tilting, shifting, and scaling the video image streams, and correcting for gapping and clipping visual image artifacts. In another aspect, a visual compensation system is described to implement the method. Additionally, a visual compensation apparatus is disclosed to perform the method operations.
Abstract:
A method for displaying video. The method includes executing an application at a processor. As instructed by the processor when executing the application, the method includes rendering a plurality of image frames at a plurality of graphics processing units (GPUs). The method includes determining information related to relative timing between renderings of the plurality of image frames. The method includes encoding the plurality of image frames into a video file. The method includes encoding the information into the video file.
Abstract:
Due to the factors such as lens distortion and camera misalignment, stereoscopic image pairs often contain vertical disparities. Introduced herein is a method and apparatus that determine and correct vertical disparities in stereoscopic image pairs using an optical flow map. Instead of discarding vertical motion vectors of the optical flow map, the introduced concept extracts and analyzes the vertical motion vectors from the optical flow map and vertically aligns the images using the vertical disparity determined from the vertical motion vectors. The introduced concept recognizes that although not apparent, vertical motion does exist in stereoscopic images and can be used to correct the vertical disparity in stereoscopic images.
Abstract:
An apparatus for capturing digital stereoscopic images of a scene. The apparatus comprises a first pair of separated camera lens oriented such that a first imaginary line between the first pair of lens is substantially parallel with a horizon line a scene, wherein digital image data is capturable through the first pair of camera lens and storable in two separate digital image data bases corresponding to a left-eye horizontal view and a right-eye horizontal view respectively. The apparatus comprises a second pair of separated camera lens oriented such that a second imaginary line between the second pair of lens is substantially non-parallel with the horizon line, wherein digital image data is capturable through the second pair of camera lens and storable in two separate digital image data bases corresponding to a left-eye off-horizontal view and a right-eye off-horizontal view respectively.
Abstract:
The disclosure is directed to a method to generate a stereoscopic video image stream of a zenith or nadir view perspective of a scene. In another aspect, a system is disclosed for generating a zenith or nadir view perspective utilizing a relative user view orientation. In yet another aspect, a video processing computer is disclosed operable to generate a zenith or nadir view perspective utilizing a user view orientation.
Abstract:
The disclosure is directed to a method to generate a generated stereoscopic video image stream of a zenith or nadir view perspective of a scene utilizing a blending of stereoscopic and monoscopic view perspectives. In another aspect, a system is disclosed for generating a zenith or nadir view perspective utilizing a relative user view orientation. In another aspect, an apparatus is disclosed capable to generate a zenith or nadir view perspective utilizing a detected user view orientation, and display a generated stereoscopic video image stream of the view perspective.
Abstract:
A system for multi-client control of a common avatar. In one embodiment, the system includes: (1) a cloud game engine for executing game code configured to create a game, generate a video stream corresponding to a particular player and accept a response stream from the particular player to allow the particular player to play the game and (2) a cooperative play engine associated with the cloud game engine for communication therewith and configured to multicast the video stream from the cloud game engine to the particular player and at least one other player, combine separate response streams from the particular player and the at least one other player into a joint response stream based on avatar functions contained therein and provide the joint response stream to the cloud game engine.
Abstract:
The present disclosure is directed to a method to correct for visual artifacts in a virtual reality (VR) video image where there is significant motion of the video image as a result of user actions. A user may request that the video image be moved, such as a through motion detected through a VR device, i.e., turning the head, or through a request to an application, i.e., joystick feedback to a gaming application. The video image motion can cause stutter and jitter visual artifacts, when the video frame buffer uses a synchronization constraint, such as vertical synchronization (VSync). When the VSync is disabled, a tearing visual artifact can be present. This disclosure presents a frame buffer handling process that operates with VSync disabled. The process allows the display refresh rates to operate at higher frequencies, while correcting for significant motion of the video image, i.e., tearing, through shifting back certain pixels within the scanout frame buffer.
Abstract:
A method for stereoscopically presenting visual content is disclosed. The method comprises identifying and distinguishing between a first type of content and a second type of content of a frame to be stereoscopically displayed. The method also comprises rendering the first type of content in a first left and a first right frame from a single perspective using a first stereoscopic rendering method. Further, the method comprises rendering the second type of content in a second left and a second right frame using a second, different stereoscopic method from two different perspectives. Additionally, the method comprises merging the first and second left frames and the first and second right frames to produce a resultant left frame and a resultant right frame. Finally, the method comprises displaying the resultant left frame and the resultant right frame for stereoscopic perception by a viewer.