Abstract:
An image processing apparatus includes: an input section configured to receive fluorescence image information obtained by picking up an image of fluorescence based on application of excitation light to a subject provided with a fluorescent substance with a specific effect on a living tissue and therapeutic light position image information including an application position of therapeutic light; a specification section configured to specify an application region as a region of the application position of the therapeutic light; an extraction section configured to extract a luminance value corresponding to the application region of the therapeutic light and a luminance value corresponding to a region other than the application region; and a calculation section configured to calculate and output a ratio of the extracted luminance value corresponding to the application region to the luminance value corresponding to the region other than the application region.
Abstract:
A fluorescence observation apparatus including a light source that radiates illumination light and excitation light; a return-light-image generating portion and a fluorescence-image generating portion that generate a return-light image and a fluorescence image, respectively; a fluorescence detecting portion that detects a fluorescence region in the fluorescence image; a return-light-image adjusting portion that adjusts gradation values of the return-light image; a superimposed-image generating portion that generates a superimposed image by using the return-light image, in which the gradation values have been adjusted, and the fluorescence image; and a coefficient setting portion that sets, in the case in which the fluorescence region is detected, a degree-of-reduction of the gradation values, so that the gradation values of the return-light image are decreased as compared with the case in which the fluorescence region is not detected.
Abstract:
Fluorescence generated at a lesion is distinguished from fluorescence generated at portions other than the lesion, and thus, observation is performed by using only the fluorescence generated at the lesion. Provided is a fluorescence observation apparatus including a light radiating portion that radiates excitation light onto an examination subject; a fluorescence-distribution acquiring portion that acquires an intensity distribution of fluorescence generated at the examination subject due to irradiation with the excitation light from the light radiating portion; and a non-target-region excluding portion that, in the fluorescence-intensity distribution acquired by the fluorescence-distribution acquiring portion, excludes regions in which a spectrum in a specific wavelength band has changed due to a specific biological component whose concentration in a lesion is lower than in other portions.
Abstract:
Provided is a fluorescence observation apparatus including: a fluorescence image acquisition section and a reference image acquisition section that acquire a fluorescence image and a reference image of a subject, respectively; a division image generation section that generates a division image by dividing an image based on the fluorescence image by an image based on the reference image; a display section that displays a corrected fluorescence image based on the division image; a correction processing section that applies correction processing to at least one of the reference image and the fluorescence image and/or to the division image prior to the generation of the division image or prior to the display of the corrected fluorescence image; an observation condition determination section that determines observation conditions of the subject; and a correction condition setting section that sets parameters regarding the correction processing according to the observation conditions.
Abstract:
An endoscope system includes a light source apparatus to generate an illumination light including a first light in a red to near infrared region, a second light in a green region, and a third light in a blue region, an image pickup device to pick up an image of an object and output an image pickup signal, and a processor to generate a first to third color components corresponding to the first to third lights based on an image generated according to the image pickup signal. The processor generates two of three color components that are blue, green, and red included in an observation image by using a second color component, and generates one remaining color component by using a first color component, and generates respective color components of red, green, and blue included in a white light observation image by using the first to third color components.
Abstract:
A living body observation system has a light source apparatus configured to generate white observation light and excitation light for exciting fluorescent medical agent, a camera unit configured to pick up an image of a subject, a switch capable of giving an instruction to switch an observation mode, and a processor. The processor generates a white observation image and a fluorescent image; judges whether or not a parameter acquired based on the fluorescent image meets a condition under which observation of fluorescence is possible, switches to a fluorescence observation mode if the condition under which observation of the fluorescence is possible is met, when an instruction is given in a normal observation mode, and switches to a predetermined observation mode different from the fluorescence observation mode if the condition under which observation of the fluorescence is possible is not met.
Abstract:
The invention provides a fluoroscopy apparatus including an image-capturing device that acquires a fluorescence image of a subject; a sensitivity adjusting portion that sets a sensitivity of the image-capturing device to fluorescence on the basis of a gradation value of the fluorescence image; a notifying portion that extracts a lesion part from the fluorescence image acquired by the image-capturing device with the sensitivity set by the sensitivity adjusting portion and presents it to an operator; and a display switching portion that displays the fluorescence image on a display unit when the sensitivity in the image-capturing device is equal to or less than a predetermined threshold and that presents information showing the existence of the lesion part on the notifying portion when the sensitivity is greater than the predetermined threshold.
Abstract:
Provided is a fluoroscopy apparatus including a fluorescence-image generating portion that generates a fluorescence image; an identifying portion that identifies a position of a high-luminance region in the fluorescence image; a storage portion that stores the position of the high-luminance region; a detecting portion that detects an amount of change in a physical quantity, which can possibly act as a cause of changes in a property of the high-luminance region, starting from a time at which the position of the high-luminance region is identified by the identifying portion; a confidence-level calculating portion that calculates a confidence level of the property of the high-luminance region based on the detected amount of change; and a display-image generating portion that generates a display image in which the display mode at the position of the high-luminance region is set in accordance with the confidence level.
Abstract:
An endoscope system includes a light source apparatus to generate an illumination light including a first light in a red to near infrared region, a second light in a green region, and a third light in a blue region, an image pickup device to pick up an image of an object and output an image pickup signal, and a processor to generate a first to third color components corresponding to the first to third lights based on an image generated according to the image pickup signal. The processor generates two of three color components that are blue, green, and red included in an observation image by using a second color component, and generates one remaining color component by using a first color component, and generates respective color components of red, green, and blue included in a white light observation image by using the first to third color components.
Abstract:
An electrode unit configured to resect or coagulate tissue inside a subject by using a high-frequency current, including: an electrode supporting portion provided with a pair of distal end rigid portions surfaces of which are covered by an electrically insulating material, and an elastic region portion having lower bending rigidity than bending rigidity of each of the pair of distal end rigid portions, the elastic region portion being provided on a proximal end side of each of the pair of distal end rigid portions; and an electrode configured with electrode bodies respectively protruding downward from the pair of distal end rigid portions and an installation portion that installs respective lower ends of the electrode bodies.