Abstract:
An imaging apparatus according to an aspect of the present disclosure includes a light source that, in operation, emits pulsed light to a living body, an image sensor that includes at least one pixel including a photodiode and charge accumulators that, in operation, accumulate signal charge from the photodiode, and a control circuit that, in operation, controls the image sensor. The charge accumulators, in operation, accumulate the signal charge corresponding to a component of the pulsed light scattered inside the living body.
Abstract:
An image pickup apparatus includes: a first light source which, in operation, emits first pulsed light to project a first image of a first pattern at a first position in a predetermined region of a subject, and emits second pulsed light to project a second image of a second pattern at a second position, different from the first position, in the predetermined region of the subject; an image sensor including multiple pixels each including a photodetector that, in operation, converts received light into a signal charge, and a first accumulator and a second accumulator each of which, in operation, accumulates the signal charge; and a control circuit which, in operation, controls the first light source and the image sensor.
Abstract:
An imaging device includes a light source, an image sensor, and a controller. Each pixel of the image sensor includes first and second accumulators and a discharger. The controller, while a component of light from the light source reflected by the surface of a target is incident on the image sensor, causes the accumulators to accumulate signal charge not discharged to the discharger, by setting the image sensor so that signal charge is discharged to the discharger, while a component having scattered inside the target is incident on the image sensor, causes the first accumulator to accumulate signal charge by setting the image sensor so that signal charge is not discharged to the discharger and signal charge is accumulated in the first accumulator, and causes the image sensor to generate first and second signals that are respectively based on signal charge accumulated in the first and second accumulators.
Abstract:
A biological information detection device according to an aspect of the present disclosure includes: a light source that, in operation, emits irradiation light for irradiating a test portion of a subject; a light detector that, in operation, detects light reached from the test portion and that outputs an electrical signal corresponding to the light; and a calculation circuit that, in operation, generates a signal of biological information related to a blood flow in a target area in the test portion based on the electrical signal. The light detector is an image sensor. The electrical signal includes an image signal obtained by the image sensor. The calculation circuit, in operation, detects a magnitude of an inclination of an orientation of the test portion with respect to a reference orientation by image recognition based on the image signal, and determines the target area according to the magnitude of the inclination of the orientation of the test portion.
Abstract:
An imaging apparatus includes an imaging device, a first imaging optical system and a second imaging optical system that form respective input images from mutually different viewpoints onto the imaging device, and a first modulation mask and a second modulation mask that modulate the input images formed by the first imaging optical system and the second imaging optical system. The imaging device captures a superposed image composed of the two input images that have been formed by the first imaging optical system and the second imaging optical system, modulated by the first modulation mask and the second modulation mask, and optically superposed on each other, and the first modulation mask and the second modulation mask have mutually different optical transmittance distribution characteristics.
Abstract:
An imaging device according to an aspect of the present disclosure is provided with: a light source that, in operation, emits pulsed light including components of different wavelengths; an encoding element that has regions each having different light transmittance, through which incident light from a target onto which the pulsed light has been irradiated is transmitted; a spectroscopic element that, in operation, causes the incident light transmitted through the regions to be dispersed into light rays in accordance with the wavelengths; and an image sensor that, in operation, receives the light rays dispersed by the spectroscopic element.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes a light source that, in operation, emits first pulsed light and second pulsed light, an image sensor that includes at least one pixel including a photodiode, a first charge accumulator and a second charge accumulator, the first charge accumulator and the second charge accumulator, in operation, accumulating signal charge from the photodiode, and a control circuit that, in operation, controls the image sensor. The control circuit, in operation, causes the first charge accumulator to begin to accumulate the signal charge a period of time after the light source begins to emit the first pulsed light. The control circuit, in operation, causes the second charge accumulator to begin to accumulate the signal charge the period of time after the light source begins to emit the second pulsed light.