Abstract:
A method, non-transitory computer readable medium, and apparatus for calibrating a device using augmented data are disclosed. For example, the method measures k spectral values of each patch for a first plurality of patches generated by the device and a second plurality of patches generated by the reference device, creates a first augmented data set by selecting a delta (δ), wherein the first augmented data set comprises the δ applied k times to each one of the k spectral values of each one of the first plurality of patches, initializes initializing a function to create a second augmented data set for the reference device, solves the function to obtain a matrix of calibration values of the device that is based upon the first augmented data set and the second augmented data set and calibrates the device using the matrix of calibration values.
Abstract:
A method is provided for using a single-pixel imager in order to spatially reconstruct an image of a scene. The method can comprise the following: configuring a light filtering device including an array of imaging elements to a spatially varying optical filtering process of incoming light according to a series of spatial patterns corresponding to sampling functions. The light filtering device can be a transmissive filter including a first membrane, a second membrane, and a variable gap therebetween. The method further comprises tuning a controller for manipulating a variable dimension of the gap; and, measuring, using a photodetector of the single-pixel imager, a magnitude of an intensity of the filtered light across pixel locations in the series of spatial patterns. The magnitude of the intensity can be equivalent to an integral value of the scene across the pixel locations.
Abstract:
A spectrometer includes: a collimating element configured for collimating a beam of light into a first one of a cross-dispersing element and an echelle grating, the grating in optical communication with the cross-dispersing element; a focusing element for receiving the light from a second one of the cross-dispersing element and the echelle grating and focusing wavelengths of the light onto a spatial light modulator; the spatial light modulator configured for selectively directing the wavelengths onto a detector for detection. A method of use and the method of fabrication are provided.
Abstract:
One aspect of the invention provides a spatially-selective disk including a plurality of holes arranged such that a matrix having a plurality of rows, each row having elements corresponding to a fraction of a pixel in a viewing window projected onto the disk that is backed by a hole at a distinct rotational position of the disk, has linearly independent rows. Another aspect of the invention provides a spectrometry device including: a disk having one or more holes; a motor configured to rotate the disk; one or more beam-shaping optics arranged to map one or more spectral components of radiation of interest onto a plurality of locations on the disk; and a receiver positioned to capture the one or more spectral components passing through the one or more holes as the disk is rotated.
Abstract:
An apparatus and method are provided for creating an image of a microarray. The apparatus includes at least one light source configured to direct light toward the microarray. The apparatus includes an excitation filter configured to filter the light into a first frequency band towards dichromatic mirror. The dichromatic mirror reflects light onto the microarray causing the microarray to emit electromagnetic energy. The apparatus includes emission filter configured to filter the electromagnetic energy within a second frequency band. The apparatus further includes an imaging unit having a charged coupled device (CCD), the CCD having an imaging surface masked by a pinhole blind such that when the pinhole blind receives electromagnetic energy from the emission filter, an image is created of the entire microarray.
Abstract:
Embodiments of the present invention relate to systems and methods for spectral imaging. Electromagnetic energy emanating from an object is passed through a first dispersive element, a coded aperture, and a second dispersive element to a detector plane. A wavelength-dependent shift is created by the first dispersive element. The coded aperture modulates the image emanating from the first dispersive element. The wavelength-dependent shift is removed from the modulated image by the second dispersive element producing a wavelength-independent image measured by the detector. A spectral image of the object is calculated from the measured image, a wavelength-dependent shift of the first dispersive element, the code of the coded aperture, and a wavelength dependent shift of the second dispersive element. A spectral image can be calculated from measurements obtained in a single time step and from a number of measurements that is less than the number of elements in the spectral image.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, to and the power source in a hand-held device.
Abstract:
A method and apparatus are provided for determining a property of a fluid downhole by using a tunable optical grating to collect a fluid's spectrum over a wavelength region of interest. A property of the fluid is estimated from spectra that are obtained from light that has interacted with the fluid and then been reflected off of the tunable optical grating onto a photodetector.
Abstract:
A chemometric analyzer for analyzing a plurality of analytes. The analyzer disperses radiation by wavelength along an encoding axis. The analyzer includes a spatial radiation modulator having a plurality of radiation filters. Each radiation filter modulates the intensity of a corresponding spectral component in the radiation.
Abstract:
A class of aperture coded spectrometer is optimized for the spectral characterization of diffuse sources. The instrument achieves high throughput and high spatial resolution by replacing the slit of conventional dispersive spectrometers with a spatial filter or mask. A number of masks can be used including Harmonic masks, Legendre masks, and Hadamard masks.