Abstract:
An image acquisition device includes an optical system, an illumination angle adjustment mechanism, and a stage. The optical system has a lens and a light source disposed in the focal plane of the lens, and generates a collimated illumination light. The illumination angle adjustment mechanism is configured so as to be able to change the irradiation direction of the illumination light with respect to an object. A module is detachably loaded on a stage. The module includes the object and an image sensor which are integrated such that the illumination light transmitted through the object is incident on the image sensor. The stage has a circuit for receiving an output of the image sensor in a state where the module is loaded on the stage.
Abstract:
A preparation element set including an image sensor including a sensor surface, a sensor back surface, and a board; a package including a front surface, a back surface, and terminals on the back surface, the front surface touching or facing the sensor back surface; and a transparent plate facing the sensor surface with a subject placed therebetween, wherein the board includes a board surface and a board back surface, a distance between the board surface and the sensor surface is less than a distance between the board back surface and the sensor surface, a distance between the board surface and the sensor back surface is more than a distance between the board back surface and the sensor back surface, conductive holes pierce the board from the board surface to the board back surface, and conductors on the board surface are electrically connected to terminals by using the conductive holes.
Abstract:
A semiconductor photodetector has at least one unit pixel having a photoelectric conversion part, a charge storage part, and a detection circuit. The photoelectric conversion part includes a charge multiplication region in which incident light is converted into a charge, and the charge is multiplied by avalanche multiplication. The charge storage part is connected to the photoelectric conversion part and stores a signal charge from the photoelectric conversion part. The detection circuit is connected to the charge storage part, converts the signal charge stored in the charge storage part into a voltage, passes the voltage through an amplifier to amplify the voltage, and outputs the amplified voltage.
Abstract:
A socket includes a first base member that includes a module mount unit allowing a module including an imaging device and an object to be placed thereon and an electric connector that electrically connects the imaging device to an external apparatus, a second base member having an opening, and an engagement unit that causes the first base member to be engaged with the second base member under a condition that the module placed on the module mount unit is sandwiched by the first and second base members. When the first base member is engaged with the second base member by the engagement unit under a condition that the module placed on the module mount unit is sandwiched by the first base member and the second base member, the electric connector is electrically connected to the imaging device, and the object receives illumination light from a light source through the opening.
Abstract:
The solid-state imaging device according to the present invention includes a semiconductor substrate including an imaging region and a peripheral circuit region, a wiring layer formed on the semiconductor substrate, a plurality of pixel electrodes arranged in a matrix on the wiring layer above the imaging region, a photoelectric conversion film formed on the wiring layer and the plurality of pixel electrodes above the imaging region, and an upper electrode formed on the photoelectric conversion film. The photoelectric conversion film has a laminated structure in which a plurality of well layers and a plurality of barrier layers are alternately laminated, the well layers made of a first semiconductor having a fundamental absorption edge in a wavelength region longer than a near-infrared light wavelength, and the barrier layers made of an insulator or a second semiconductor having a band gap wider than that of the first semiconductor.
Abstract:
An image forming apparatus includes an imager that is electrically connected to an image sensor disposed at a position where light that has passed through a sample slice is incident on the image sensor, and an illumination system that emits illumination light successively in different illumination directions relative to a sample slice to illuminate the sample slice with the illumination light and that emits a first light having a peak in a first wavelength range and a second light having a peak in a second wavelength range. The image forming apparatus obtains a plurality of first-color images with the image sensor while the sample slice is being illuminated with the first light serving as the illumination light successively in the different illumination directions. The image forming apparatus obtains at least one second-color image with the image sensor while the sample slice is being illuminated with the second light in at least one of the different illumination directions. The image forming apparatus generates a high-resolution image on the basis of the plurality of first-color images and the at least one second-color image.