摘要:
A method for making cathode slurry is provided and includes the following steps. First, a plurality of electron emitters, an inorganic binder, and an organic carrier are provided. Second, the plurality of electron emitters, the inorganic binder, and the organic carrier are mixed to obtain a mixture. Third, the mixture is mechanically pressed and sheared.
摘要:
A method for making cathode slurry is provided and includes the following steps. First, a number of electron emitters, an inorganic binder, and an organic carrier are provided. Second, the electron emitters, the inorganic binder, and the organic carrier are mixed to obtain a mixture. Third, the mixture is mechanically pressed and sheared.
摘要:
A field emission cathode structure includes a dielectric layer, a field emission unit, a grid electrode, and a conductive layer. The dielectric layer is positioned on the insulating substrate and defines a cavity. A field emission unit is attached on the cathode electrode and received in the cavity of the dielectric layer. The field emission unit is electrically attached to the cathode electrode. The grid electrode is located on the dielectric layer, and electrons emitted from the field emission unit emit through the grid electrode. The conductive layer is electrically attached to the grid electrode and insulated from the field emission unit. A field emission display device using the above-mentioned field emission cathode structure is also provided.
摘要:
A field emission cathode structure includes an insulating substrate, a number of strip cathode electrodes, a number of insulators, a number of strip gate electrodes, a number of electron emission units, and a number of fixing layers. The number of insulators is located among and spaced apart from the number of strip cathode electrodes. The field emission cathode structure further satisfies the following conditions: D1≦D2/10, wherein, D1 is defined as a width of each of the number of insulators, and D2 is defined as a distance between centerlines of each two adjacent field emission units of the number of field emission units.
摘要:
A field emission cathode device includes an insulative substrate, a plurality of cathode electrodes, and a plurality of electron emission units. The insulative substrate has a top surface and a bottom surface. The insulative substrate defines a plurality of openings. The cathode electrodes are located on the bottom surface. Each of the electron emission units has a first portion secured between the insulative substrate and one corresponding cathode electrode and a second portion received in one corresponding opening.
摘要:
An ionization vacuum gauge includes a cathode electrode, a gate electrode, and an ion collector. The cathode electrode includes a base and a field emission film disposed thereon. The gate electrode is disposed adjacent to the cathode electrode with a distance therebetween. The ion collector is disposed adjacent to the gate electrode with a distance therebetween. The field emission film of the cathode electrode includes carbon nanotubes, a low-melting-point glass, and conductive particles.
摘要:
A field emission device (10) includes a sealed container (12) with a first light-permeable portion (120) and an opposite second light-permeable portion (122). A first phosphor layer (14) is formed on the first light-permeable portion. A first light-permeable anode (16) is formed on the first light-permeable portion. A second phosphor layer (18) is formed on the second light-permeable portion. A second light-permeable anode (20) is formed on the second light-permeable portion. A shielding barrel (22) is disposed within the container and electrically connected to at least one cathode electrode (25, 26). The shielding barrel has opposite open ends facing toward the first and the second light-permeable portions respectively. The shielding barrel has an inner surface, and a slurry layer (24) containing conductive nano material is formed on the inner surface of the shielding barrel.
摘要:
A field emission cathode device includes a cathode substrate, a gate electrode, a first dielectric layer, a cathode electrode, and an electron emission layer. The gate electrode is located on a surface of the cathode substrate. The first dielectric layer is located on a surface of the gate electrode and defines a first opening to expose part of the gate electrode. The cathode electrode is spaced from the gate electrode through the first dielectric layer defining a second opening in alignment with the first opening. A field emission display using the field emission cathode device is also related.
摘要:
A method for making a field emission double-plane light source includes following steps. A metallic based network, a pair of anodes, and a number of supporting members, are provided. Each of the anodes includes an anode conductive layer and a fluorescent layer formed on the anode conductive layer. A number of carbon nanotubes, metallic conductive particles, glass particles and getter powders are mixed to form an admixture. The admixture is coated on an upper surface and a bottom surface of the network. The admixture on the upper and bottom surfaces of the network is dried and baked. The anodes, the cathode, and the supporting members are assembled and sealed to obtain the field emission double-plane light source.
摘要:
A field-emission-based flat light source includes the following: a light-permeable substrate; a plurality of line-shaped cathodes; an anode; a light-reflecting layer; and a fluorescent layer. The light-permeable substrate has a surface, and the line-shaped cathodes, with a plurality of carbon nanotubes formed and/or deposited thereon, are located on the surface of the light-permeable substrate. The anode faces the cathodes and is spaced from the cathodes to form a vacuum chamber. The light-reflecting layer is formed on the anode and faces the cathode. The fluorescent layer is formed on the light-reflecting layer.