Abstract:
Various embodiments of methods and systems for optimizing processing performance in a multi-functional portable computing device (“PCD”) are disclosed. Depending on how the PCD is being used, the temperature limit associated with the touch temperature of the PCD may be variable. As such, a preset and fixed touch temperature limit based on a “worst use case” scenario can unnecessarily limit the quality of service (“QoS”) provided to a user under different use case scenarios. Accordingly, embodiments of the systems and methods define and recognize different device definitions for the PCD which are each associated with certain use cases and each dictate different temperature thresholds or limits subject to which the PCD may run.
Abstract:
Various embodiments of methods and systems for adaptive thermal management techniques implemented in a portable computing device (“PCD”) are disclosed. Notably, in many PCDs, temperature thresholds associated with various components in the PCD such as, but not limited to, die junction temperatures, package on package (“PoP”) memory temperatures and the “touch temperature” of the external surfaces of the device itself limits the extent to which the performance capabilities of the PCD can be exploited. It is an advantage of the various embodiments of methods and systems for adaptive thermal management that, when a temperature threshold is violated, the performance of the PCD is sacrificed only as much and for as long as necessary to clear the violation before authorizing the thermally aggressive processing component(s) to return to a maximum operating power.
Abstract:
Various methods and systems for minimum supply voltage level selection in a portable computing device (“PCD”) are disclosed. It is an advantage of the various embodiments that PCD designers may close timing at a certain minimum supply voltage and operating temperature threshold that is higher than the lowest end of the main operating temperature range within which the PCD must function. By closing timing at the higher operating temperature threshold, relatively smaller components requiring relatively lower power consumption may be used in the PCD, thereby providing improved overall power consumption when the PCD is operating at operating temperatures above the threshold. To maintain functionality when operating temperatures fall below the threshold, the minimum supply voltage to the components is increased. The systems and methods sacrifice power consumption concerns below the operating temperature threshold in exchange for reduced form factors and improved power efficiencies in higher, more typical operating temperature conditions.
Abstract:
Various embodiments of methods and systems for optimizing processing performance in a multi-functional portable computing device (“PCD”) are disclosed. Depending on how the PCD is being used, the temperature limit associated with the touch temperature of the PCD may be variable. As such, a preset and fixed touch temperature limit based on a “worst use case” scenario can unnecessarily limit the quality of service (“QoS”) provided to a user under different use case scenarios. Accordingly, embodiments of the systems and methods define and recognize different device definitions for the PCD which are each associated with certain use cases and each dictate different temperature thresholds or limits subject to which the PCD may run.