Abstract:
Aspects relate to measurement and event reporting from a distributed unit (DU) of a disaggregated base station to a central unit (CU) of the disaggregated base station. The CU can configure the DU with a measurement configuration associated with at least one value to be obtained by the DU and a reporting configuration for reporting the at least one value to the CU. The measurement reports can be sent by DU periodically or the measurement reports can be event-triggered based on the reporting configuration. In addition, the measurement reports can be UE-specific or DU/cell-specific. The measurement reports may include random access channel (RACH) reports, uplink measurement reports, radio link protocol (RLC) reports, medium access control (MAC) protocol reports, and other types of measurement or event-based reports.
Abstract:
An integrated access and backhaul (IAB) donor central unit (CU) may transmit, to an IAB-node, a plurality of messages for a child of the IAB-node, the plurality of messages including a first message being associated with a first condition, and a second message being associated with a second condition, and transmit an indication instructing the IAB to forward, to the child, the first message if a first condition is met or the second message if a second condition is met. The IAB-node may receive, from the IAB-donor-CU, the indication, determine that one condition among the first condition and the second condition has occurred, forward one of the first message or the second message to the child based on the occurrence of the one condition, and discard the other of the first message or the second message.
Abstract:
Example implementations include a method, apparatus and computer-readable medium of wireless communication at a secondary node (SN), comprising determining to perform conditional primary SCG cell (PSCell) change (CPC) of a user equipment (UE) to one of a set of target primary SCG cells within the SN different from a current primary SCG cell. The implementations further include generating a secondary cell modification message including identification information for the set of target primary SCG cells for the CPC. Additionally, the implementations further include transmitting the secondary cell modification message including the identification information for the set of target primary SCG cells for the CPC to a master node (MN) associated with the UE. Additionally, the implementations further include receiving a response message from the MN indicating a confirmation or a rejection of the secondary cell modification message. Example method, apparatus and computer-readable medium of wireless communication at the MN are included.
Abstract:
Techniques are disclosed in which generic position methods in a wireless network allow positioning of a target user equipment (UE) that is served by any one (or more) of a number of different Radio Access Technologies (RATs) and that allow measurements by the UE of access nodes belonging to different RATs and/or measurements of the UE by access nodes for different RATs. With a generic position method, a common set of procedures, messages, and parameters may be defined that are applicable to multiple RATs and that do not require a location server to know in advance the serving RAT for a target UE.
Abstract:
Enhanced network operation is described in which UE context awareness reports requested in network management. A set of conditions is provided to the UE by a serving base station that triggers the UE to transmit a status report to the serving base station. The set of conditions includes at least one non-cellular UE condition. The UE monitors for the conditions and then, when detected, obtains reporting information for the status report that includes one or both of non-cellular and cellular UE information. The UE transmits the status report with the reporting information to the serving base station which uses the information to make determinations regarding network operations management. The serving base station may manage such network operations by sending updated or modified configuration data to the UE or by sending instructions to other network entities to prepare resources for predicted future UE communications.
Abstract:
Disclosed are methods and systems for enabling a Home Node B (HNB) to discover the positioning capabilities of an HNB Gateway (HNB GW) in supporting particular positioning operations associated with transporting Positioning Calculation Application Part (PCAP) messages between the HNB and a standalone serving mobile location center (SAS).
Abstract:
Enhanced network operation is described in which UE context awareness reports requested in network management. A set of conditions is provided to the UE by a serving base station that triggers the UE to transmit a status report to the serving base station. The set of conditions includes at least one non-cellular UE condition. The UE monitors for the conditions and then, when detected, obtains reporting information for the status report that includes one or both of non-cellular and cellular UE information. The UE transmits the status report with the reporting information to the serving base station which uses the information to make determinations regarding network operations management. The serving base station may manage such network operations by sending updated or modified configuration data to the UE or by sending instructions to other network entities to prepare resources for predicted future UE communications.
Abstract:
Mobile devices may be paged via non-cellular or cellular radio access technologies (RATs). Mobile devices may determine that they are capable of receiving a paging message via a non-cellular RAT, and they indicate to a network that they are capable of such paging. Accordingly, in addition to cellular paging, mobile devices may be paged for cellular or non-cellular data via a non-cellular RAT. Non-cellular paging may be facilitated by a non-cellular paging server, which may be an independent network-side entity or may be an aspect of another network entity, such as an mobility management entity (MME).
Abstract:
Aspects present herein relate to methods and devices for wireless communication including an apparatus, e.g., a UE and/or a base station. The apparatus may receive, from a base station, a logged measurement configuration including a PLMN ID and a NID, the logged measurement configuration further including at least one of a trace reference, a logging area, a MDT PLMN list, or a MDT NPN list. The apparatus may also store the PLMN ID and the NID based on the received logged measurement configuration. Additionally, the apparatus may compare the PLMN ID and the NID to an MDT SNPN list to identify if the PLMN ID and the NID are included in the MDT SNPN list. The apparatus may also transmit, to the base station, an availability indicator if the PLMN ID and the NID are included in the MDT SNPN list.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may select at least one target node for a radio resource control connection, wherein the user equipment is in a particular radio resource control communication state when the at least one target node is selected, and wherein the user equipment is configured to communicate using dual-connectivity, wherein context information associated with the user equipment is stored by the user equipment, a master node associated with the user equipment, and a secondary node associated with the user equipment based at least in part on the user equipment being in the particular radio resource control communication state; and/or transmit information to the at least one target node or the master node to cause the context information to be provided to the at least one target node. Numerous other aspects are provided.