Abstract:
An improved wireless split rendering system for displaying Extended Reality (XR) content is discussed. A rendering server and client head-mounted device (HMD) may communicate over a wireless medium, where communication control is given to a server application layer logic. This allows the server to use request pose information from the HMD only when needed for rendering, while preserving bandwidth on the wireless medium for transmitting frames of the rendered content. This reduces contention and improves channel efficiency.
Abstract:
Methods and apparatuses for communicating in a wireless communication network are disclosed. For example, one method includes determining, by a first access point, a polling schedule for communicating with one or more wireless stations on a first wireless communication channel, the polling schedule for a second access point on a second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, transmission information to the one or more wireless stations, wherein the transmission information comprises information for the one or more wireless stations to receive a transmission from the second access point on the second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, one or more packets to at least one of the one or more wireless stations in accordance with the polling schedule.
Abstract:
Systems and methods are provided to improve roaming performance and to minimize disruptions in connectivity. When roaming between a source AP and a target AP, the device determines whether the APs employ different gateways, such as through an ARP exchange. If the source and target APs have different gateways, a DHCP exchange is used to renew the IP address of the device to restore network connectivity.
Abstract:
An improved wireless split rendering system for displaying Extended Reality (XR) content is discussed. A rendering server and client head-mounted device (HMD) may communicate over a wireless medium, where communication control is given to a server application layer logic. This allows the server to use request pose information from the HMD only when needed for rendering, while preserving bandwidth on the wireless medium for transmitting frames of the rendered content. This reduces contention and improves channel efficiency.
Abstract:
Systems, methods, and devices for communicating data in a wireless communications network are described herein. In some aspects, a relay may associate with an access point and then clone the access point by transmitting the service set identifier of the access point. An association between a wireless node and a relay may be formed such that the relay provides relay services for wireless network communication between the access point and the wireless node. In some aspects, the relay may generate messages which communicate its available capacity so that downstream nodes may determine from which relays service may be available. In addition, each node may generate messages for upstream relays which communicate the load an association with the node would cause. Through such communication between relays, admission control may be used to minimize associations being dropped because of insufficient available capacity.
Abstract:
A method of managing a stack includes detecting, by a stack manager of a processor, that a size of a frame to be allocated exceeds available space of a first stack. The first stack is used by a particular task executing at the processor. The method also includes designating a second stack for use by the particular task. The method further includes copying metadata associated with the first stack to the second stack. The metadata enables the stack manager to transition from the second stack to the first stack upon detection that the second stack is no longer in use by the particular task. The method also includes allocating the frame in the second stack.
Abstract:
Various aspects are provided for low-latency wireless local area networks. In a aspect, an access point (AP) may select, from a plurality of wireless stations associated with the AP, a wireless station for the AP to poll. Each of the plurality of wireless stations may be configured to transmit on a channel in response to being polled by the AP. The AP may transmit, at a time selected by the AP, a downlink frame including polling information to the wireless station on the channel, the polling information including a permitted duration for the wireless station to access the channel. The AP may monitor during the permitted duration for the AP to receive an uplink transmission from the wireless station on the channel, the uplink transmission from the wireless station being in response to the polling information received by the wireless station.
Abstract:
An improved wireless split rendering system for displaying Extended Reality (XR) content is discussed. A rendering server and client head-mounted device (HMD) may communicate over a wireless medium, where communication control is given to a server application layer logic. This allows the server to use request pose information from the HMD only when needed for rendering, while preserving bandwidth on the wireless medium for transmitting frames of the rendered content. This reduces contention and improves channel efficiency.
Abstract:
Methods and apparatuses for communicating in a wireless communication network are disclosed. For example, one method includes determining, by a first access point, a polling schedule for communicating with one or more wireless stations on a first wireless communication channel, the polling schedule for a second access point on a second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, transmission information to the one or more wireless stations, wherein the transmission information comprises information for the one or more wireless stations to receive a transmission from the second access point on the second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, one or more packets to at least one of the one or more wireless stations in accordance with the polling schedule.
Abstract:
Methods and apparatuses for communicating in a wireless communication network are disclosed. For example, one method includes determining, by a first access point, a polling schedule for communicating with one or more wireless stations on a first wireless communication channel, the polling schedule for a second access point on a second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, transmission information to the one or more wireless stations, wherein the transmission information comprises information for the one or more wireless stations to receive a transmission from the second access point on the second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, one or more packets to at least one of the one or more wireless stations in accordance with the polling schedule.