Abstract:
An antenna system includes: a ground conductor; a substrate; a pair of planar dipole conductors disposed such that at least a portion of the substrate is disposed between the ground conductor and the pair of dipole conductors; a pair of energy couplers each electrically connected to a respective one of the pair of dipole conductors; and a pair of isolated lobes including electrically-conductive material. The pair of isolated lobes are electrically separate from the pair of dipole conductors and the pair of energy couplers, and disposed between the pair of dipole conductors and the ground conductor.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.
Abstract:
Techniques for increasing the lifespan of a nanopore DNA sensing device are disclosed. A related method may include forming a first electrode, forming a second electrode, disposing the first electrode and second electrode within an insulator, and disposing a lipid bilayer having a nanopore between the first electrode and second electrode. The forming of the second electrode may comprise forming a silver (Ag) layer, pressing a mold into the Ag layer to form a pattern in the Ag layer, removing the mold from the Ag layer, and exposing the Ag layer to an electrolyte.
Abstract:
A wireless device is described. The wireless device includes an antenna. The wireless device also includes a hybrid transformer. The wireless device further includes a frequency matching termination port. The frequency matching termination port provides impedance matching with the antenna at multiple frequencies. The frequency matching termination port may include multiple resistors, inductors and capacitors that can be switched in/out.
Abstract:
Certain aspects of the present disclosure are directed to a radio frequency digital-to-analog converter (RFDAC). The RFDAC generally includes a plurality of digital-to-analog (DAC) unit cells. At least one DAC unit cell is capable of being configured in an active state or in a sleep state. For the at least one DAC unit cell, an output impedance of the DAC unit cell in the active state is equal to an output impedance of the DAC unit cell in the sleep state.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.
Abstract:
Techniques for increasing the lifespan of a nanopore DNA sensing device are disclosed. A related DNA sensing device may be formed by a process comprising forming a first electrode, forming a second electrode, disposing the first electrode and second electrode within an insulator, and disposing a lipid bilayer having a nanopore between the first electrode and second electrode. The forming of the second electrode may comprise forming a silver (Ag) layer, pressing a mold into the Ag layer to form a pattern in the Ag layer, removing the mold from the Ag layer, and exposing the Ag layer to an electrolyte.
Abstract:
An ionic current sensor array includes a master bias generator and a plurality of sensing cells. The master bias generator is configured to generate a bias voltage. Each sensing cell includes an ionic current sensor, an integrating capacitor, a sense transistor coupled between the integrating capacitor and the ionic current sensor, and an amplifier coupled to provide a reference voltage to bias the ionic current sensor. The amplifier includes a first transistor and a second transistor. The first transistor is coupled to receive the bias voltage, and the second transistor is coupled to the first transistor to provide the reference voltage to the ionic current sensor. The second transistor is also coupled between a source of the sense transistor and the gate of the sense transistor.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.
Abstract:
A transceiver for reducing transmit signal leakage is described. The transceiver includes a downconverter that downconverts a receive signal to produce a feedback signal. The transceiver also includes a weight learning module that correlates the feedback signal with a transmit signal to obtain a weight. The transceiver further includes a transmit leakage estimator that obtains an estimated transmit leakage signal based on the weight and the transmit signal. The transceiver also includes a transmit leakage reducer that reduces the transmit leakage in the receive signal based on the estimated transmit leakage signal.