Abstract:
Disclosed is a wideband antenna comprising a dielectric-loaded cavity-backed patch antenna driven with a stripline. The antenna includes a dielectric resonator. The stripline feeds a probe disposed within the dielectric resonator. The probe emits EM radiation, which is coupled to the patch antenna for transmission.
Abstract:
A wireless device with built-in self test (BIST) capability for testing/calibrating transmit and receive circuits is disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes a first circuit and a second circuit. The first circuit (e.g., a transmitter or a mixer) provides a test signal to at least one transmit path. The test signal is electro-magnetically coupled from the output of the at least one transmit path to a test signal line. For example, the test signal may be provided from the at least one transmit path via at least one antenna feed line to at least one antenna element and may be electro-magnetically coupled from the at least one antenna feed line to the test signal line. The second circuit (e.g., a buffer, a receiver, or a mixer) processes a received test signal from the test signal line.
Abstract:
An apparatus includes a first power amplifier coupled to a first transmission path, a first low noise amplifier coupled to a first reception path, a second power amplifier coupled to a second transmission path, and a second low noise amplifier coupled to a second reception path. A first switch is configured to selectively couple the second low noise amplifier to receive an output of the first power amplifier. A second switch is configured to selectively couple the first low noise amplifier to receive an output of the second power amplifier.
Abstract:
An apparatus (e.g., a wireless device) includes an antenna array and a separate antenna. The antenna array includes a plurality of antenna elements having a first antenna beam. The separate antenna includes an antenna element having a second antenna beam. The antenna element of the separate antenna is separate from the antenna elements of the antenna array. The antenna array and the separate antenna are active at different times in an operational mode. The antenna array may transmit and the separate antenna may be inactive in a transmit mode. The separate antenna may receive and the antenna array may be inactive in a receive mode. The antenna array may receive and the separate antenna may transmit in a test mode. Alternatively, the antenna array may transmit and the separate antenna may receive in the test mode.
Abstract:
An apparatus (e.g., a wireless device) with an antenna array and a separate antenna is disclosed. The antenna array includes a plurality of antenna elements having a first antenna beam. The separate antenna includes an antenna element having a second antenna beam. The antenna element of the separate antenna is separate from the antenna elements of the antenna array. The antenna array and the separate antenna are active at different times in an operational mode. The antenna array may transmit and the separate antenna may be inactive in a transmit mode. The separate antenna may receive and the antenna array may be inactive in a receive mode. The antenna array may receive and the separate antenna may transmit in a test mode. Alternatively, the antenna array may transmit and the separate antenna may receive in the test mode.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.
Abstract:
An apparatus includes a first power amplifier coupled to a first transmission path, a first low noise amplifier coupled to a first reception path, a second power amplifier coupled to a second transmission path, and a second low noise amplifier coupled to a second reception path. A first switch is configured to selectively couple the second low noise amplifier to receive an output of the first power amplifier. A second switch is configured to selectively couple the first low noise amplifier to receive an output of the second power amplifier.
Abstract:
An apparatus includes a first amplifier configured to be coupled to a first antenna of an array of antenna elements of a mobile device. The apparatus also includes a second amplifier configured to be coupled to a second antenna of the array of antenna elements. The apparatus further includes control circuitry configured to turn off one of the first and the second amplifiers and to selectively reduce an amount of current provided to the other of the first and second amplifiers.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.