Abstract:
A user equipment (UE) may monitor a channel for wireless communication associated with a first radio access technology (RAT) during one or more of a first active duration or a first inactive duration. The UE may operate in a first power mode during the first inactive duration. The UE may monitor the channel for wireless communication associated with a second RAT during one or more of a second active duration or a second inactive duration. The UE may operate during the second inactive duration in one or more of the first power mode or a second power. The UE may operate according to the first mode or the second mode based on the monitoring of the channel associated with the first RAT and the second RAT.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish, using a first subscription of the UE, a first communication connection associated with a first service. The UE may establish, using a second subscription of the UE, a second communication connection associated with a second service. The UE may operate in a dual subscriber identity module (SIM) dual active (DSDA) mode based at least in part on establishing the first communication connection and establishing the second communication connection. The UE may perform an action to maintain concurrent services, including the first service and the second service, while operating in the DSDA mode. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may be configured with two subscriptions. The first subscription may support dual connectivity with one or more cell groups, such as a master cell group (MCG) and a secondary cell group (SCG), while a second subscription may not support dual connectivity. Each subscription may support communications with one or more radio access technologies (RAT). The UE may use the protocol stack for a RAT in the first subscription to receive idle-mode signaling, such as one or more paging messages, from the second subscription using the same RAT.
Abstract:
The present disclosure presents a method and apparatus for improving uplink (UL) performance at a user equipment (UE). For example, the method may include identifying a random access channel (RACH) preamble failure when the UE is communicating with a current serving cell of the UE, increasing transmission power of successive RACH preambles based at least on the identifying, comparing signals received on a downlink at the UE via a first path and a second path from the current serving cell of the UE, and determining that a RACH preamble failure problem exists at the UE based at least on the comparing of the signals received on the downlink and identifying of successive RACH preamble failures. As such, improved performance uplink (UL) performance at a UE may be achieved.
Abstract:
Methods, systems, and devices for wireless communication are described. In some systems, a user equipment (UE) may divide a measurement of a cell into two or more portions. The UE may receive a control message that indicates a request to perform the measurement and a target frequency associated with the measurement. In some examples, the UE may generate at least a first radio frequency (RF) script during an on duration of a discontinuous reception (DRX) cycle based on the target frequency. The UE may perform at least a portion of the measurement during an off duration of the DRX cycle based on the first RF script. Additionally or alternatively, the UE may generate the first RF script and perform the portion of the measurement during an off duration of a DRX cycle and the UE may generate a second RF script during an off duration of a second DRX cycle.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether a slot timing difference, between a first cell and a second cell for a dual connectivity mode, satisfies a threshold value, where the first cell is a serving cell associated with a first radio access technology (RAT) and the second cell is a serving cell or a candidate cell associated with a second RAT. The UE may perform an operation to prevent the dual connectivity mode with the second cell, establish the dual connectivity mode with the second cell, maintain the dual connectivity mode with the second cell, or terminate the dual connectivity mode with the second cell based at least in part on whether the slot timing difference satisfies the threshold value. Numerous other aspects are provided.
Abstract:
A method, a computer-readable medium, and an apparatus may be a User Equipment (UE) having a first subscription to a first RAT and a second subscription to a second RAT configured to operate using the first RAT, to change from operating using the first RAT to operating using the second RAT to monitor multiple Synchronization Signal Blocks (SSBs) at multiple times prior to performing at least one of decoding a paging message, receiving system information, searching a neighboring frequency, or measuring the neighboring frequency, to return to using the first RAT during a first period between at least one set of adjacent times of the multiple times that the UE monitors for the SSBs, and to change from using the first RAT to using the second RAT to receive the paging message, receive the system information, search the neighboring frequency, or measure the neighboring frequency.