Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for a user equipment (UE) to delay RLC retransmissions (e.g., during off-durations, including CDRX off-durations). According to aspects of the present disclosure, a UE may delay triggering an RLC retransmission of an RLC PDU until after a next opportunity for the UE to receive an RLC ACK of the RLC PDU. By delaying RLC retransmissions, a UE may be prevented from waking up from one or more CDRX off-durations and using power associated with waking up from the one or more CDRX off-durations.
Abstract:
A person may utilize multiple connected devices, such as smart watches, user equipments (UEs), smartphones, tablet computers, and/or the like, which may each be assigned unique phone numbers. Operators may assign a common phone number to the multiple connected devices; however, the phone number is not used in the access stratum path of a radio access technology resulting in multiple paging procedures being performed for the multiple connected devices. In implementations, described herein, a first UE, such as a smartphone, may obtain paging information associated with decoding paging messages for a second UE, such as a smart watch. The first UE may use the paging information to decode a paging message of a combined paging cycle established for the first UE and the second UE, thereby obviating a need for multiple paging cycles for the first UE and the second UE.
Abstract:
A method for reestablishing a radio resource control (RRC) connection on a second subscription upon completion of a voice call on a first subscription for a multi-subscriber identity module (SIM) multi-standby (MSMS) mobile communication device, includes: starting a voice call timer at the start of the voice call on the first subscription; stopping the voice call timer upon completion of the voice call on the first subscription; determining an elapsed time of the voice call on the first subscription based on a value of the voice call timer; and determining whether the elapsed time of the voice call on the first subscription is greater than a value of a network connectivity timer.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a UE. The UE transmits data packets. The UE determines to implement a flow control to reduce a transmission rate of the data packets. The UE determines whether the data packets include known or potential real-time data packets. The UE refrains from implementing the flow control to reduce the transmission rate of the known/potential real-time data packets when the data packets include known/potential real-time data packets.
Abstract:
Methods and apparatus for selection of radio access technology (RAT) based on device usage patterns are provided. A User Equipment (UE) obtains information relating to one or more Quality of Service (QoS) metrics for communication of data by the UE. The UE designates a Radio Access Technology (RAT) from a plurality of available RATs as a preferred RAT for the communication, based on the obtained information.
Abstract:
The disclosure relates to position sensors. An apparatus in accordance with aspects of the disclosure, the apparatus includes a wireless transceiver configured to transmit and receive wireless signals, a SPS receiver configured to receive SPS signals, memory, and a processor. The processor/memory may be configured to generate SPS-based location data using the SPS receiver in response to receipt of a MDT measurement request, determine whether the SPS-based location data is accurate or not accurate, in response to a determination that the SPS-based location data is not accurate, generate network-based location data using the wireless transceiver and include the network-based location data in an MDT report, in response to a determination that the SPS-based location data is accurate, include the SPS-based location data in the MDT report, and transmit the MDT report, wherein the MDT report includes one or both of the SPS-based location data and/or the network-based location data.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may decrease a first value of a transmission power of a first component carrier relative to a second value of a transmission power of a second component carrier based at least in part on the second component carrier carrying control information for the user equipment, wherein the second value of the transmission power of the second component carrier is based at least in part on a first maximum power reduction value identified for carrier aggregation. The user equipment may increase the transmission power of the second component carrier to a third value based at least in part on a second maximum power reduction value identified for single carrier. Numerous other aspects are provided.
Abstract:
A person may utilize multiple connected devices, such as smart watches, user equipments (UEs), smartphones, tablet computers, and/or the like, which may each be assigned unique phone numbers. Operators may assign a common phone number to the multiple connected devices; however, the phone number is not used in the access stratum path of a radio access technology resulting in multiple paging procedures being performed for the multiple connected devices. In implementations, described herein, a first UE, such as a smartphone, may obtain paging information associated with decoding paging messages for a second UE, such as a smart watch. The first UE may use the paging information to decode a paging message of a combined paging cycle established for the first UE and the second UE, thereby obviating a need for multiple paging cycles for the first UE and the second UE.
Abstract:
Certain aspects of the present disclosure provide methods for adapting one or more parameters for uplink transmissions based on a channel condition profile. An example method generally includes obtaining, from a base station, feedback relating to one or more uplink transmissions sent from the UE to a base station (BS); generating, based on the feedback, a channel condition profile of one or more channels associated with the one or more uplink transmissions; and taking one or more actions, based on the channel condition profile, to adjust at least one of a power, code rate, or modulation scheme for one or more subsequent uplink transmissions.
Abstract:
Certain aspects of the present disclosure provide techniques for defending against false semi-persistent scheduling (SPS) activation detection and/or missed SPS release. According to certain aspects, a user equipment (UE) may detect one or more conditions for a semi-persistent scheduling (SPS) activation or release are met based on a downlink transmission, generate one or more metrics related to downlink transmission, and determine a valid SPS activation or release has occurred if the one or more metrics satisfy one or more criteria. According to certain aspects, a UE may determine a valid semi-persistent scheduling (SPS) activation has occurred, detect a number of PDSCH CRC failures, and implicitly declare an SPS release based on the detection.