Abstract:
The subject matter disclosed herein describes a method and system to monitor and identify vibrations in a rotational mechanical system. Various fault conditions in a rotating machine operating at variable speeds may be identified, at least in part, by identifying the multiple of the fundamental frequency, or order, at which the vibration occurs. The orders of vibration present in a measured vibration signal may be determined by finding an order spectrum of a measured vibration signal in the position domain. A fault vector is generated from the order spectrum that identifies the magnitude of each order of vibration present in the measured vibration signal. The fault vector may be plotted on a radar chart to provide a visual indication of the type of fault present in the mechanical system. Evaluation models for each fault determines a probability and magnitude for each fault condition being present in the sampled vibration signal.
Abstract:
The subject matter disclosed herein describes a method and system to monitor and identify vibrations in a rotational mechanical system. Various fault conditions in a rotating machine operating at variable speeds may be identified, at least in part, by identifying the multiple of the fundamental frequency, or order, at which the vibration occurs. The orders of vibration present in a measured vibration signal may be determined by finding an order spectrum of a measured vibration signal in the position domain. A fault vector is generated from the order spectrum that identifies the magnitude of each order of vibration present in the measured vibration signal. The fault vector may be plotted on a radar chart to provide a visual indication of the type of fault present in the mechanical system. Evaluation models for each fault determines a probability and magnitude for each fault condition being present in the sampled vibration signal.
Abstract:
An apparatus includes a switch module that selectively turns on a switch to connect an input power conductor connected to a voltage source to a motor in a sequence. The switch for each phase is turned on for a portion of a cycle of a fundamental frequency of the voltage source. A source phase module determines a phase of the AC voltage source, a back-EMF phase module determines a phase of a back-EMF of the motor, and a torque module determines when a phase difference between the phase of the AC voltage source and the phase of the back-EMF is within a phase range indicative of a positive motor torque. A pulse module enables the switches in response to the phase difference having a phase within the phase range and disables the switches in response to the phase difference having a phase not in the phase range.
Abstract:
The present techniques generally relate to a system and methods for remotely monitoring the interior of a closed electrical enclosure for localized heating (e.g., hot spots). In general, the monitoring system includes features designed to detect one or more hot spots within a dim or dark environment, determine the location of the hot spot within the enclosure, determine a temperature range of the hot spot, and/or notify (e.g., alarm or alert) an operator upon detection of the hot spot. The monitoring system may include one or more temperature sensitive elements configured to determine the heating of potential hot spots within the electrical enclosure. Further, the foregoing features may be designed to allow one or more electrical enclosures to remotely communicate with computer equipment (e.g., workstation or general purpose computers) over a wireless network.
Abstract:
An apparatus includes a switch module that selectively turns on a switch to connect an input power conductor connected to a voltage source to a motor in a sequence. The switch for each phase is turned on for a portion of a cycle of a fundamental frequency of the voltage source. A source phase module determines a phase of the AC voltage source, a back-EMF phase module determines a phase of a back-EMF of the motor, and a torque module determines when a phase difference between the phase of the AC voltage source and the phase of the back-EMF is within a phase range indicative of a positive motor torque. A pulse module enables the switches in response to the phase difference having a phase within the phase range and disables the switches in response to the phase difference having a phase not in the phase range.
Abstract:
The present techniques generally relate to a system and methods for remotely monitoring the interior of a closed electrical enclosure for localized heating (e.g., hot spots). In general, the monitoring system includes features designed to detect one or more hot spots within a dim or dark environment, determine the location of the hot spot within the enclosure, determine a temperature range of the hot spot, and/or notify (e.g., alarm or alert) an operator upon detection of the hot spot. The monitoring system may include one or more temperature sensitive elements configured to determine the heating of potential hot spots within the electrical enclosure. Further, the foregoing features may be designed to allow one or more electrical enclosures to remotely communicate with computer equipment (e.g., workstation or general purpose computers) over a wireless network.
Abstract:
An apparatus for a quasi variable frequency motor controller is includes a DFC module that applies a first frequency to a motor as part of a discrete frequency control (“DFC”) method for motor starting. The first frequency includes a discrete frequency in a plurality of discrete frequencies of the DFC method and each discrete frequency includes a frequency lower than a fundamental frequency of an alternating current (“AC”) voltage source providing power to the motor. The apparatus includes a torque module that determines when motor torque generated by the motor reaches a negative torque threshold and a next frequency module that applies a second frequency to the motor in response to the torque module determining that the motor torque has reached the negative torque threshold. The second frequency is a next frequency in the DFC method.
Abstract:
A system includes a plurality of power monitors that, in operation, monitor parameters of power in an automation system at points between loads and/or power sources. Each of the power monitors includes sensing circuitry to sense the power parameters, peer-to-peer communications circuitry to communicate with other power monitors via peer-to-peer communication, network communications circuitry to communicate with automation devices via a network, and functional circuits to perform analysis of monitored power parameters in a cooperative manner based upon the power parameters monitored by the respective power monitor and power parameters monitored by other power monitors communicated via peer-to-peer communication.
Abstract:
An electric motor in which at least one of the rotor and the stator has an asymmetric design is disclosed. The electric motor is divided into a number of segments, where each segment has an equal number of windings and an equal number of poles. The physical construction of each pole within a segment is identical and the number of turns of each winding within a segment is identical. The asymmetry is formed by varying the physical construction of the either the rotor or the stator within one segment from the corresponding construction of the rotor or stator in the other segments. The asymmetries are designed to improve one or more operating characteristics such as sensorless performance, torque ripple, or cogging torque in the motor.
Abstract:
A system includes a plurality of power monitors that, in operation, monitor parameters of power in an automation system at points between loads and/or power sources. Each of the power monitors includes sensing circuitry to sense the power parameters, peer-to-peer communications circuitry to communicate with other power monitors via peer-to-peer communication, network communications circuitry to communicate with automation devices via a network, and functional circuits to perform analysis of monitored power parameters in a cooperative manner based upon the power parameters monitored by the respective power monitor and power parameters monitored by other power monitors communicated via peer-to-peer communication.