摘要:
The ability to excite virtually any portion of semiconductor device is enhanced via a grid formed for exciting circuitry in the semiconductor device. According to an example embodiment of the present invention, a grid having a plurality of narrow probe points is formed extending over target circuitry in a semiconductor device. The grid is accessed and used for exciting various target circuitry within the device by exciting the part of the grid that corresponds to the portion of the target circuitry to which access is desired.
摘要:
The ability to monitor virtually any portion of semiconductor device is enhanced via a grid formed for analyzing circuitry in the semiconductor device. According to an example embodiment of the present invention, a grid having a plurality of narrow probe points is formed extending over target circuitry in a semiconductor device. The grid is accessed and used for monitoring various target circuitry within the device by accessing the part of the grid that corresponds to the portion of the target circuitry to which access is desired.
摘要:
Integrated circuit devices are analyzed using an integrated system adapted to obtain time-resolved information from the back side of a silicon based semiconductor chip using hot carrier emissions. According to an example embodiment of the present invention, a system is adapted to analyze a semiconductor device under test (DUT) using a plurality of sensors mounted to a microscope having an objective lens. The plurality of sensors include a global acquisition sensor, a single-point acquisition sensor, and a navigation sensor. The integrated system is adapted to use the plurality of sensors individually and simultaneously. The integrated system improves the analysis of the DUT for reasons including that it makes possible the performance of more than one type of analysis simultaneously using a single test arrangement.
摘要:
The present invention is directed to the repair of resistive circuitry in an integrated circuit die having a multitude of circuit paths. According to an example embodiment of the present invention, a semiconductor die having a resistive electrical connection is analyzed. The location of a circuit portion in the die having a resistive electrical connection is identified. Using the identified location, the resistive circuit portion is annealed and the resistivity of that circuit portion is reduced. The reduced resistivity improves the ability of the die to operate at high speeds, and makes possible the repair and subsequent use of the die in various applications.
摘要:
According to one aspect of the disclosure and a particular example application directed to a flip-chip packaged die, a method for acquiring a signal from a target node in the circuit side includes removing substrate via the back side of the die to form an access area over the target node. A material is deposited in the access area over the target node in such a way to form simultaneously a conductive core and an immediately adjacent insulator. The conductive core is then used to couple a test signal between the target node and the conductive core. Other aspects of the disclosure include using a focused ion-beam system to provide varying concentrations of Gallium in forming simultaneously the conductive core and the immediately adjacent insulator. These aspects significantly lessen integrated circuit analysis and testing procedures.
摘要:
A system for determining the endpoint associated with removing silicon from the backside of a flip chip type die includes a tool for removing silicon and a light source for directing light to the backside of the die. An electrical measuring apparatus, such as a voltmeter, ammeter or oscilloscope, is attached across the output pins of a package to which the die is attached. The light or ions directed toward the backside of the die induce a current in the devices formed in the semiconductor. The value of the current or voltage output depends on the thickness of material between the endpoint on the backside of the die and the devices in the epitaxial layer of the die. The induced signal can be monitored to determine the thickness. Silicon can be removed globally until the thickness is reasonable such that a local thinning tool can be used to remove silicon to get to the area of interest in a reasonable amount of time. The induced current can be monitored during local thinning. A viewing mechanism such as infrared microscopy can be used to locate the specific device or devices of interest in the epitaxial layer of the die. The viewing mechanism is also used to determine where localized thinning will occur.
摘要:
A system for determining the endpoint associated with removing silicon from the backside of a flip chip type die includes a tool for removing silicon and a light source for directing light to the backside of the die. An electrical measuring apparatus, such as a voltmeter, ammeter or oscilloscope, is attached across the output pins of a package to which the die is attached. The light or ions directed toward the backside of the die induce a current in the devices formed in the semiconductor. The value of the current or voltage output depends on the thickness of material between the endpoint on the backside of the die and the devices in the epitaxial layer of the die. The induced signal can be monitored to determine the thickness. Silicon can be removed globally until the thickness is reasonable such that a local thinning tool can be used to remove silicon to get to the area of interest in a reasonable amount of time. The induced current can be monitored during local thinning. A viewing mechanism such as infrared microscopy can be used to locate the specific device or devices of interest in the epitaxial layer of the die. The viewing mechanism is also used to determine where localized thinning will occur.
摘要:
Defect analysis of a semiconductor die is enhanced in a manner that makes possible the viewing of spatial manifestations of the defect from virtually any angle. According to an example embodiment of the present invention, substrate is removed from a semiconductor die while simultaneously obtaining images of the portions of the die from which substrate is being removed. The images are taken at various points in the substrate removal process, recorded and combined together to form a three-dimensional image of selected portions of the die. The image is then used to view the selected portions, and the nature of one or more defects therein are analyzed.
摘要:
Various apparatus and methods for enhancing hot-electron luminescence in an integrated circuit are provided. In one aspect, an apparatus is provided that includes a first circuit device coupled to a first voltage source that is operable to bias the first circuit device to a first voltage, and a second circuit device that has a first input coupled to the first voltage source and a junction defining a first side and a second side. One of the first and second sides is coupled to a second voltage source that is independent of the first voltage source and capable of selectively biasing the one of the first and second sides at a second voltage higher than the first voltage. The second device is operable to emit a hot-electron induced photon upon entry into saturation.
摘要:
A method for bringing up lower level metal nodes of multi-layered IC devices (200) includes a step of boring a passage (210) down through the obstructing or non-target metal layers (220) exposing these layers, through the Inter Layer Dielectric layers (230), stopping at the target metal layer (240), and a step of depositing Gallium implanted insulator (250, 260) forming a node structure (280) with a conductive core (250) and an insulative sheath (260). The conductive core (250) brings up the target metal node or layer (240) and the insulative sheath (260) isolates the exposed non-target metal nodes or layers (220) from the target metal node (240) and the conductive core (250).