摘要:
The ability to excite virtually any portion of semiconductor device is enhanced via a grid formed for exciting circuitry in the semiconductor device. According to an example embodiment of the present invention, a grid having a plurality of narrow probe points is formed extending over target circuitry in a semiconductor device. The grid is accessed and used for exciting various target circuitry within the device by exciting the part of the grid that corresponds to the portion of the target circuitry to which access is desired.
摘要:
Integrated circuit devices are analyzed using an integrated system adapted to obtain time-resolved information from the back side of a silicon based semiconductor chip using hot carrier emissions. According to an example embodiment of the present invention, a system is adapted to analyze a semiconductor device under test (DUT) using a plurality of sensors mounted to a microscope having an objective lens. The plurality of sensors include a global acquisition sensor, a single-point acquisition sensor, and a navigation sensor. The integrated system is adapted to use the plurality of sensors individually and simultaneously. The integrated system improves the analysis of the DUT for reasons including that it makes possible the performance of more than one type of analysis simultaneously using a single test arrangement.
摘要:
The present invention is directed to the repair of resistive circuitry in an integrated circuit die having a multitude of circuit paths. According to an example embodiment of the present invention, a semiconductor die having a resistive electrical connection is analyzed. The location of a circuit portion in the die having a resistive electrical connection is identified. Using the identified location, the resistive circuit portion is annealed and the resistivity of that circuit portion is reduced. The reduced resistivity improves the ability of the die to operate at high speeds, and makes possible the repair and subsequent use of the die in various applications.
摘要:
The ability to monitor virtually any portion of semiconductor device is enhanced via a grid formed for analyzing circuitry in the semiconductor device. According to an example embodiment of the present invention, a grid having a plurality of narrow probe points is formed extending over target circuitry in a semiconductor device. The grid is accessed and used for monitoring various target circuitry within the device by accessing the part of the grid that corresponds to the portion of the target circuitry to which access is desired.
摘要:
According to one aspect of the disclosure, laser-thermal annealing is used to clear an imaging path through the back side of a semiconductor device after the back side of the chip has been thinned to expose a selected region in the substrate. For many applications, thinning results in the formation of crystal defects that inhibit the ability to obtain images through the back side of the semiconductor device. One example embodiment overcomes this problem by thinning via laser-chemical etching the back side of the semiconductor device under a pressure exceeding a threshold level, and then reducing the pressure to a level below the threshold level and scanning the back side of the semiconductor device using a laser at a reduced power level. IR microscopy is then used to capture an image of a circuit in the circuit side of the semiconductor device through the back side of the semiconductor device. One particular example application is directed to a flip-chip semiconductor device. Another aspect of the invention is directed to clearing collision-induced viewing impairments, as may be caused by plasma etching.
摘要:
According to an example embodiment of the present invention, a defect detection approach involves detecting the existence of defects in an integrated circuit as a function of at least one applied energy source. In response to energy that is applied to the integrated circuit, response signals are detected. A parameter including information such as amplitude, frequency, phase, or a spectrum is developed for a reference integrated circuit device and then compared to the detected response signal. The deviation in the response and reference signals, and the type of energy source used, are correlated to a particular defect in the device.
摘要:
A method and system providing spatial and timing resolution for photoemission microscopy of an integrated circuit. A microscope having an objective lens forming a focal plane is arranged to view the integrated circuit, and an aperture element having an aperture is optically aligned in the back focal plane of the microscope. The aperture element is positioned for viewing a selected area of the integrated circuit. A position-sensitive avalanche photo-diode is optically aligned with the aperture to detect photoemissions when test signals are applied to the integrated circuit.
摘要:
According to an example embodiment, the present invention is directed to a system and method for analyzing an integrated circuit. A laser is directed to the back side of an integrated circuit and causes local heating, which generates acoustic energy in the circuit. The acoustic energy propagation in the integrated circuit is detected via at least two detectors. Using the detected acoustic energy from the detectors, at least one circuit defect is detected and located.
摘要:
Analysis of a semiconductor die having silicon-on-insulator (SOI) structure is enhanced by capacitively coupling a signal to the die. According to an example embodiment of the present invention, a die having a thinned back side is analyzed by capacitively coupling an input signal through the insulator portion of the SOI structure and effecting a state change to circuitry in the die. The state change is used to evaluate a characteristic of the die, such as by detecting a response to the state change. The ability to force such a state change is helpful for evaluating dies having SOI structure, and is particularly useful for evaluation techniques that require or benefit from maintaining the insulator portion of the SOI structure intact.
摘要:
A semiconductor device is analyzed and manufactured using a heat-exchange probe. According to an example embodiment of the present invention, a heat-exchange probe is controlled to exchange heat to a portion of a semiconductor device using sub-micron resolution. In one implementation, sub-micron resolution is achieved using a navigational arrangement, such as microscope, adapted to direct light to within about one micron of a target circuit portion on a plane of the device. In another implementation, a physical heat probe tip (e.g., a metal probe having about a one micron diameter probe tip) is navigated to a selected portion of the device using sub-micron navigational resolution. In each of these implementations, as well as others, the heat exchange is preponderantly confined to within about a one micron radius of a target portion of circuitry on lateral plane of the device. With this approach, heat exchange can be controlled to selectively stimulate circuitry within the device, which is particularly useful in high-density circuit implementations.