Abstract:
Continuously tunable and precisely wavelength-switchable fiber lasers combine fiber Bragg gratings and the transmissive filtering properties of high finesse fiber Fabry-Perot filters. This laser arrangement adapts to multiple wavelength ranges based on the selections of fiber Bragg grating and gain medium and their arrangement to create a wavelength-modulatable and simultaneously rapidly wavelength-switchable narrow linewidth all-fiber laser design. This laser arrangement further results in narrow-linewidth outputs with fast switching speeds between the selected wavelengths.
Abstract:
The present invention concerns an optical molecular sensing device and related method. The optical molecular sensing device has an optical resonator adapted to be connected to an excitation source. The excitation source may be a laser operating at a 2.7-2.8 um spectral range. The optical molecular sensing device has an emission spectrum comprised of a plurality wavelengths. Also included are a detection unit and a RF frequency counter to detect at least one RF beat note resulting from detecting the emission spectrum of the optical resonator. A change in frequency of the RF beat note indicates the presence of a target molecule.
Abstract:
An electromechanical flight deck door locking system capable of functioning to keep a cockpit door locked in the event of an interruption in electrical power to the system. The flight deck door locking system includes a locking assembly including a locking component and a manually graspable handle for displacing the locking component. Further, the locking system includes an electronic control panel configured to receive data from an individual seeking access to the cockpit and for electrically locking and unlocking the locking assembly. The locking system also includes a mechanical locking assembly, such as a key lock, whereby a user can use a key to lock and unlock the door if electrical power to the system is unavailable.
Abstract:
The present invention relates generally to electro-optically active waveguide segments, and more particularly to the use of a selective voltage input to control the phase, frequency and/or amplitude of a propagating wave in the waveguide. Particular device structures and methods of manufacturing are described herein.
Abstract:
The present invention provides an optical fiber and method of making the same. The optical fiber includes a body for transmitting light. The body has an anisotropic refractive index wherein the anisotropic refractive index offsets changes in the refractive index of the fiber caused by bending the fiber. The fiber body may further include a core and cladding.
Abstract:
Apparatus, systems, and methods to construct and operate a radio frequency self-regenerated locked optical oscillator can be used in a variety of applications. Stable synchronization of an optical oscillator can be achieved by driving an amplitude modulator with a radio frequency (RF) signal regenerated from the cavity of the optical oscillator. Additional apparatus, systems, and methods are disclosed.
Abstract:
The present invention relates generally to electro-optically active waveguide segments, and more particularly to the use of a selective voltage input to control the phase, frequency and/or amplitude of a propagating wave in the waveguide. Particular device structures and methods of manufacturing are described herein.
Abstract:
An improved highly doped waveguide is provided which comprises a waveguide having a dopant disposed therein, the dopant having a concentration of between 100 and 500,000 ppm, and wherein the concentration of the dopant enhances cross-relaxation between two elements of the dopant.
Abstract:
The present invention relates generally to electro-optically active waveguide segments, and more particularly to the use of a selective voltage input to control the phase, frequency and/or amplitude of a propagating wave in the waveguide. Particular device structures and methods of manufacturing are described herein.
Abstract:
The present invention relates generally to electro-optically active waveguide segments, and more particularly to the use of a selective voltage input to control the phase, frequency and/or amplitude of a propagating wave in the waveguide. Particular device structures and methods of manufacturing are described herein.