摘要:
A wavelength selective switching device and method for selectively transmitting optical signals based on wavelength utilizes diffraction to spatially separate the optical signals of different wavelengths such that the optical signal of a selected wavelength can be selectively transmitted. The wavelength selective switching device selectively rotates the polarization components of the optical signals such that the polarization states of the polarization components are the same in both incoming and outgoing directions at the diffraction grating. Thus, a diffraction grating with a high grating line frequency (e.g. greater than 900 grating lines per mm for signals in the 1550 nm wavelength range) can be used for diffracting the polarization components of the optical signals in both the incoming and outgoing directions.
摘要:
A wavelength selective switching device and method for selectively transmitting optical signals based on wavelength utilizes diffraction to spatially separate the optical signals of different wavelengths such that the optical signal of a selected wavelength can be selectively transmitted. The wavelength selective switching device selectively rotates the polarization components of the optical signals such that the polarization states of the polarization components are the same in both incoming and outgoing directions at the diffraction grating. Thus, a diffraction grating with a high grating line frequency (e.g. greater than 900 grating lines per mm for signals in the 1550 nm wavelength range) can be used for diffracting the polarization components of the optical signals in both the incoming and outgoing directions.
摘要:
A wavelength selective switching device and method for selectively transmitting optical signals based on wavelength utilizes diffraction to spatially separate the optical signals of different wavelengths such that the optical signal of a selected wavelength can be selectively transmitted. The wavelength selective switching device selectively rotates the polarization components of the optical signals such that the polarization states of the polarization components are the same in both incoming and outgoing directions at the diffraction grating. Thus, a diffraction grating with a high grating line frequency (e.g. greater than 900 grating lines per mm for signals in the 1550 nm wavelength range) can be used for diffracting the polarization components of the optical signals in both the incoming and outgoing directions.
摘要:
A wavelength selective switching device and method for selectively transmitting optical signals based on wavelength utilizes diffraction to spatially separate the optical signals of different wavelengths such that the optical signal of a selected wavelength can be selectively transmitted. The wavelength selective switching device selectively rotates the polarization components of the optical signals such that the polarization states of the polarization components are the same in both incoming and outgoing directions at the diffraction grating. Thus, a diffraction grating with a high grating line frequency (e.g. greater than 900 grating lines per mm for signals in the 1550 nm wavelength range) can be used for diffracting the polarization components of the optical signals in both the incoming and outgoing directions.
摘要:
A method and a system for displaying images are provided. In the method, a pixel is provided that includes a layer of ferroelectric material and a layer of liquid crystal material. A first electric field is momentarily applied to the pixel to electrically polarize the ferroelectric layer to a first polarization. The first polarization is then used to maintain the liquid crystal material in a first orientation corresponding to a first apparent brightness of the pixel.
摘要:
Embodiments of the invention involve UV resistant liquid crystal cells. One embodiment of the invention is to increase the volume of the liquid crystal material that is stored inside the cell. For example, trenches may be used to provide reservoirs that hold the additional liquid crystal material. Another embodiment of the invention uses an inorganic alignment layer in the cell, instead of using an organic material as the alignment layer. A further embodiment of the invention uses a pump to circulate liquid crystal material through the cell. The inventive cell can be used as a SLM in photolithographic imaging systems.
摘要:
A reprogramming gene-loaded Sendai viral vector comprising Sendai virus genes and reprogramming genes, wherein the Sendai virus genes include an NP gene, P/C gene, M gene, F gene, HN gene and L gene, wherein each of the M gene, the F gene and the FIN gene is from a Sendai virus strain Cl.151-derived gene and wherein at least one of the M gene, the F gene and the HN gene is functionally deleted and the L gene encodes the amino-acid sequence of the L protein in which the amino-acid residue at position 1618 is valine and a method of producing the same.
摘要:
A persistently infective virus vector is produced by using a gene so modified as to encode an amino acid sequence including a valine substituted for an amino acid residue at position-1618 in the amino acid sequence for an L protein of a persistently non-infective Sendai virus. A non-transmissible, persistently infective virus vector is also produced by defecting or deleting at least one of M gene, F gene, and HN gene. These virus vectors have no cytotoxicity, can achieve the sustained gene expression over a long period of time, is safe, and is therefore useful.
摘要:
A spatial pressure distribution sensor comprises a sensor array and a processor. The sensor array comprises an array of pressure sensors. Each of the pressure sensors is operable to generate a respective pressure signal in response to pressure applied to it. The pressure signal quantifies the pressure with greater than single-bit resolution. The processor is operable in response to the pressure signals to generate an information signal representing the spatial distribution of pressure applied to the sensor array.
摘要:
Systems and methods of detecting wireless channel status from acoustic discrimination of spectral content are described. In one aspect, a wireless system includes a spectrum analyzer, a detector, and a controller. The spectrum analyzer is operable to acoustically discriminate spectral content of an input electrical signal in multiple discrete frequency channels. The detector is operable to determine respective statuses of the frequency channels from the acoustically discriminated spectral content. The controller is operable to select one of the frequency channels based on the determined statuses of the frequency channels.