摘要:
A semiconductor structure is fabricated with reduced gate capacitance by thinning of a gate electrode to provide a reduced thickness gate electrode. The gate electrode is thinned after forming a spacer layer adjoining the gate electrode. In addition, the height of the spacer layer may also be reduced. The spacer layer thus has an enhanced horizontal width desired for locating an intrinsic source/drain with respect to an extension region and in particular, an enhanced horizontal width relative to the spacer height. The reduced thickness gate electrode may be fully silicided to provide decreased gate resistance. A raised source/drain layer may be located upon the intrinsic source/drain region. The raised source/drain layer may have a top surface higher than the reduced thickness gate electrode. In addition, the raised source/drain layer may have a top surface higher than the reduced height spacer layer.
摘要:
A semiconductor structure is fabricated with reduced gate capacitance by thinning of a gate electrode to provide a reduced thickness gate electrode. The gate electrode is thinned after forming a spacer layer adjoining the gate electrode. In addition, the height of the spacer layer may also be reduced. The spacer layer thus has an enhanced horizontal width desired for locating an intrinsic source/drain with respect to an extension region and in particular, an enhanced horizontal width relative to the spacer height. The reduced thickness gate electrode may be fully silicided to provide decreased gate resistance. A raised source/drain layer may be located upon the intrinsic source/drain region. The raised source/drain layer may have a top surface higher than the reduced thickness gate electrode. In addition, the raised source/drain layer may have a top surface higher than the reduced height spacer layer.
摘要:
A semiconductor structure is fabricated with reduced gate capacitance by thinning of a gate electrode to provide a reduced thickness gate electrode. The gate electrode is thinned after forming a spacer layer adjoining the gate electrode. In addition, the height of the spacer layer may also be reduced. The spacer layer thus has an enhanced horizontal width desired for locating an intrinsic source/drain with respect to an extension region and in particular, an enhanced horizontal width relative to the spacer height. The reduced thickness gate electrode may be fully silicided to provide decreased gate resistance. A raised source/drain layer may be located upon the intrinsic source/drain region. The raised source/drain layer may have a top surface higher than the reduced thickness gate electrode. In addition, the raised source/drain layer may have a top surface higher than the reduced height spacer layer.
摘要:
A semiconductor structure is fabricated with reduced gate capacitance by thinning of a gate electrode to provide a reduced thickness gate electrode. The gate electrode is thinned after forming a spacer layer adjoining the gate electrode. In addition, the height of the spacer layer may also be reduced. The spacer layer thus has an enhanced horizontal width desired for locating an intrinsic source/drain with respect to an extension region and in particular, an enhanced horizontal width relative to the spacer height. The reduced thickness gate electrode may be fully silicided to provide decreased gate resistance. A raised source/drain layer may be located upon the intrinsic source/drain region. The raised source/drain layer may have a top surface higher than the reduced thickness gate electrode. In addition, the raised source/drain layer may have a top surface higher than the reduced height spacer layer.
摘要:
A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate a first gate with first spacers, a second gate with second spacers, respective source and drain regions of a same conductive type adjacent to the first gate and the second gate, an isolation region disposed intermediate of the first gate and the second gate, silicides on the first gate, the second gate and respective source and drain regions; forming additional spacers on the first spacers to produce an intermediate structure, and then disposing a stress layer over the entire intermediate structure.
摘要:
A stressed semiconductor structure including at least one FinFET device on a surface of a substrate, typically a buried insulating layer of an initial semiconductor-on-insulator substrate, is provided. In a preferred embodiment, the at least one FinFET device includes a semiconductor Fin that is located on an unetched portion of the buried insulator layer which has a raised height as compared to an adjacent and adjoining etched portion of the buried insulating layer. The semiconductor Fin includes a gate dielectric on its sidewalls and optionally a hard mask located on an upper surface thereof. The inventive structure also includes a gate conductor, which is located on the surface of the substrate, typically the buried insulating layer, and the gate conductor is at least laterally adjacent to the gate dielectric located on the sidewalls of the semiconductor Fin. A stressed silicide is located on the gate conductor, which introduces stress into the channel of the FinFET device. The stressed silicide memorizes the stress from a sacrificial stressed film that is formed prior to forming the stressed silicide. The stress type of the stressed film is introduced into the silicide during a silicide anneal step.
摘要:
A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate a first gate with first spacers, a second gate with second spacers, respective source and drain regions of a same conductive type adjacent to the first gate and the second gate, an isolation region disposed intermediate of the first gate and the second gate, silicides on the first gate, the second gate and respective source and drain regions; forming additional spacers on the first spacers to produce an intermediate structure, and then disposing a stress layer over the entire intermediate structure.
摘要:
A semiconductor structure having improved carrier mobility is provided. The semiconductor structures includes a hybrid oriented semiconductor substrate having at least two planar surfaces of different crystallographic orientation, and at least one CMOS device located on each of the planar surfaces of different crystallographic orientation, wherein each CMOS device has a stressed channel. The present invention also provides methods of fabricating the same. In general terms, the inventive method includes providing a hybrid oriented substrate having at least two planar surfaces of different crystallographic orientation, and forming at least one CMOS device on each of the planar surfaces of different crystallographic orientation, wherein each CMOS device has a stressed channel.
摘要:
NMOS and PMOS device structures with separately strained channel regions and methods of their fabrication are disclosed. The source and the drain of the NMOS device is epitaxially grown of a material which causes a shift in the strain of the NMOS device channel in the tensile direction. While, the source and the drain of the PMOS device is epitaxially grown of a material which causes a shift in the strain of the PMOS device channel in the compressive direction.
摘要:
A method forms a gate conductor over a substrate, forms spacers (e.g., nitride spacers) on sides of the gate conductor, and implants an impurity into exposed regions of the substrate not protected by the gate conductor and the spacers. Then the method forms a silicide on surfaces of the exposed regions of the substrate. The method forms a conformal protective layer (e.g., an oxide or other similar material) over the silicide, the spacers, and the gate conductor. Next, the method forms a non-conformal sacrificial layer (e.g., nitride or other material that can be selectively removed with respect to the protective layer) over the protective layer. A subsequent partial etching process partially etches the sacrificial layer such that relatively thinner regions of the sacrificial layer that are over the spacers are completely removed and the relatively thicker regions of the sacrificial layer that are over the substrate are not removed. The next step in the method removes only those portions of the protective layer that cover the spacers, without removing the portions of the protective layer that cover the silicide. As the spacers are now exposed and the silicide is protected by the protective and sacrificial layers, the method can safely remove the spacers without affecting the silicide.