摘要:
A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate a first gate with first spacers, a second gate with second spacers, respective source and drain regions of a same conductive type adjacent to the first gate and the second gate, an isolation region disposed intermediate of the first gate and the second gate, silicides on the first gate, the second gate and respective source and drain regions; forming additional spacers on the first spacers to produce an intermediate structure, and then disposing a stress layer over the entire intermediate structure.
摘要:
A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate a first gate with first spacers, a second gate with second spacers, respective source and drain regions of a same conductive type adjacent to the first gate and the second gate, an isolation region disposed intermediate of the first gate and the second gate, silicides on the first gate, the second gate and respective source and drain regions; forming additional spacers on the first spacers to produce an intermediate structure, and then disposing a stress layer over the entire intermediate structure.
摘要:
A methodology for varying the depth of a design feature on a semiconductor wafer. Vias are formed according to design requirements. Nonfunctioning vias may also be placed at a location with respect to a design feature. After vias are formed, the semiconductor wafer is caused to undergo an ashing process followed by the application of an organic planarizing layer. The design features are then formed. If the depth of the design features does not meet design requirements, another semiconductor wafer may be processed to meet design requirements by varying the ashing conditions, choice of organic planarizing layer and/or the nonfunctioning and/or functioning via placement. Design features having various depths on a single semiconductor wafer may be formed with a single lithographic process.
摘要:
In an embodiment, a method of fabricating a transistor device comprises: providing a semiconductor topography comprising a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers; anisotropically etching exposed regions of the semiconductor substrate on opposite sides of the dielectric spacers to form recessed regions in the substrate; oxidizing exposed surfaces of the substrate in the recessed regions to form an oxide thereon; removing the oxide from bottoms of the recessed regions while retaining the oxide upon sidewalls of the recessed regions; and isotropically etching the substrate such that the recessed regions undercut the pair of dielectric spacers.
摘要:
Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.
摘要:
A phase change memory cell includes a first spacer electrically coupled to a first electrode and to a second spacer. The first spacer includes a planar base contacting the first electrode and a wall extending from the planar base. The second spacer is electrically coupled between a second electrode and the wall of the first spacer. The phase change memory cell is formed at a boundary where the wall of the first spacer contacts the second spacer.
摘要:
A method and an apparatus for forming a layer on a substrate are disclosed. In accordance with one embodiment, a substrate (901) is placed into a chamber (30) that includes a coil (16) and a shield (14) wherein the coil and the shield are electrically isolated by an isolation/support member (32) having a first surface (321) that is substantially contiguous with a surface of the coil and having a second surface (322) that is substantially contiguous with a surface of the shield. A layer (1002, 1102) is then deposited onto the substrate (901).
摘要:
An inductively coupled plasma reactor and method for processing a semiconductor wafer (28). The inductively coupled plasma reactor (10) includes a plasma source (16) having a plurality of channels (38, 44) in which processing gases are independently supplied to each channel. A gas supply system (20) includes a plurality of gas feed lines (34, 35, 36) each capable of supplying an individual flow rate and gas composition to the plurality of channels (38, 44) in the plasma source (16). Each channel is surrounded by an independently powered RF coil (54, 56), such that the plasma density can be varied within each channel (38, 44) of the plasma source (16). In operation, a material layer (66) overlying a semiconductor wafer (28) is either uniformly etched or deposited by localized spatial control of the plasma characteristics at each location (64) across the semiconductor wafer (28).
摘要:
A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
摘要:
Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.