Abstract:
A functional phenylene ether oligomer of the structure wherein Q1, Q2, Q3, Q4, x, y, and R are as defined herein. A curable composition includes the functional phenylene ether oligomer, and a thermoset composition includes a cured product derived from the curable composition.
Abstract:
An improved method of manufacture of a bisphenol comprises heating a monohydric phenol to a first temperature sufficient to melt the monohydric phenol; adding a carbonyl compound to 2.0-3.0 molar equivalents, based on the moles of carbonyl compound, of the monohydric phenol in the presence of catalytic amounts of an organosulfonic acid catalyst and a reaction promoter at a second temperature sufficient to maintain unreacted monohydric phenol in a molten state; increasing the temperature to a third temperature higher than the second temperature, and mixing for a time sufficient to produce the bisphenol in a yield of 80 to 100%, based on the amount of carbonyl compound; wherein mineral acids, Lewis acids, and ion exchange resins are not used. The method is applicable to the manufacture of 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, a useful intermediate for the manufacture of bi-functional poly(phenylene ether)s.
Abstract:
A process and system for the precipitation of poly(phenylene ether) is described. Precipitated poly(phenylene ether) obtained by the processes disclosed herein are in the form of poly(phenylene ether) particles having a bulk density of 150 to 500 kg/m3, preferably 250 to 500 kg/m3.
Abstract:
A method for the manufacture of a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine including heating a reaction mixture comprising a phenolphthalein compound and a primary arylamine in the presence of an acid catalyst, and a heterocyclic aromatic amine co-catalyst, to form the 2-aryl-3,3-bis(hydroxyaryl) is provided. Polymers including structural units derived from the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine are provided. Methods for the manufacture of a polycarbonate, including manufacturing the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and polymerizing the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine in the presence of a carbonate source are provided.
Abstract:
A composition comprises, based on the total weight of the composition, 45 wt % to 75 wt % of a polyetherimide; and 20 wt % to 45 wt % of talc; and 5 wt % to 15 wt % of a fluorinated polymer; wherein the composition has a number of drops to tracking at 250 volts of greater than or equal to 50 drops according to ASTM D-3638-85.
Abstract:
A copolymer having the structure (I) wherein Q1, Q2, Q3, Q4, m, and n are defined herein. The copolymer can be formed by oxidative copolymerization of 2,4,6-trimethyIresorcinoI with a monohydric phenol. Also describes are a composition comprising the copolymer and a solvent, and a composition comprising the copolymer and a thermosetting resin.
Abstract:
A composition comprises, based on the total weight of the composition, 50 wt % to 90 wt % of a polyetherimide; and 10 wt % to 50 wt % of a filler comprising talc, titanium dioxide, zirconium oxide, neutral aluminum oxide, or a combination comprising at least one of the foregoing; wherein the composition has a number of drops to tracking at 250 volts of greater than or equal to 50 drops determined according to ASTM D-3638-85.
Abstract:
Methods for synthesizing and purifying 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine compounds are provided. The method includes heating a reaction mixture including a phenolphthalein, a primary aryl amine, and an acid catalyst to form a phthalimidine; precipitating the phthalimidine from the reaction mixture to provide a crude phthalimidine; providing a solution including the crude phthalimidine, an additive, and at least one solvent; contacting the solution with one or more purification agents to provide a treated solution; precipitating and recovering a phthalimidine adduct from the treated solution; and recovering a purified phthalimidine compound from the adduct.
Abstract:
A composition comprises, based on the total weight of the composition, 25 wt % to 50 wt % of a polyetherimide; and 50 wt % to 75 wt % of a polyphthalamide; wherein the composition has a number of drops to tracking at 250 volts of greater than or equal to 50 drops determined according to ASTM D-3638-85.
Abstract:
A functional phenylene ether oligomer of the structure wherein Q1, Q2, Q3, Q4, x, y, and R are as defined herein. A curable composition includes the functional phenylene ether oligomer, and a thermoset composition includes a cured product derived from the curable composition.