Abstract:
The invention relates to a seating frame for a vehicle seat, the frame comprising a back frame component for supporting a back rest, wherein the back frame component includes a plurality of interconnected reinforcing ribs that form a single unit, and wherein the seating frame is a one-piece injection-molded part made of plastic material. The invention also relates to a process of making such a seating frame. Furthermore, the invention relates to a vehicle seat comprising such a seating frame, and a vehicle comprising such a vehicle seat or such a seating frame.
Abstract:
This disclosure relates to halogen-free flame retardant polycarbonate/thermoplastic polyester molding compositions with improved mechanical properties and increased polyester loading level. More particularly, the disclosure relates to halogen-free polycarbonate/thermoplastic polyester resin alloys with polymeric phosphorus flame retardant additive and siloxane impact modifier. Also included are methods for preparing such compositions and articles there from.
Abstract:
In an embodiment, a multilayer structure can comprise: an outermost layer; a sensor; a multilayer substrate A located between the sensor and the outermost layer, the multilayer substrate, comprising greater than or equal to 16 polymer A layers, preferably 16 to 512 polymer A layers; and greater than or equal to 16 polymer B layers, preferably 16 to 512 polymer B layers; wherein the polymer A layers and the polymer B layers are present in a ratio of 1:4 to 4:1, preferably the ratio is 1:1; wherein the multilayer substrate has a transmission of greater than or equal to 70%, preferably greater than or equal to 75%, or greater than or equal to 80%; wherein the structure has a water vapor transmission rate of less than or equal to 10 g/cc/day, preferably less than or equal to 8 g/cc/day, or less than or equal to 5 g/cc/day, or less than or equal to 2 g/cc/day.
Abstract:
Disclosed is a process for the manufacture of a polyalkylene terephthalate such as polybutylene terephthalate. In particular, the process comprises employing a titanium-containing catalyst formed by the reaction product of tetraalkyl titanate and a complexing agent comprising a phosphorous, nitrogen or boron atom. The process is used to prepare polyalkylene terephthalates characterized by improved hydrostability, as well as compositions derived therefrom.
Abstract:
Disclosed is an improved process for preparing a modified polyalkylene terephthalate by melt polycondensation followed optionally by solid state condensation comprising reacting an alkylene diol and polyethylene terephthalate, wherein polymerization occurs in the presence of a catalyst complex formed by reaction of tetra(alkyl) titanate and a compound selected from phosphorus-containing compounds, nitrogen-containing compounds, boroncontaining compounds, and combinations thereof.
Abstract:
The invention is directed to sulfonate esterified phosphazene compounds, which include cyclic, linear, or cross-linked, phosphazene compounds. The invention further relates to methods of preparing such sulfonate esterified phosphazene compounds and to polymer compositions comprising the phosphazene compounds. The invention also relates to articles comprising such polymer compositions and to the use of such sulfonate esterified phosphazene compounds for improving the fire retardancy properties of polymer compositions.
Abstract:
The invention relates to a seating frame for a vehicle seat, the frame comprising a back frame component for supporting a back rest, wherein the back frame component includes a plurality of interconnected reinforcing ribs that form a single unit, and wherein the seating frame is a one-piece injection-molded part made of plastic material. The invention also relates to a process of making such a seating frame. Furthermore, the invention relates to a vehicle seat comprising such a seating frame, and a vehicle comprising such a vehicle seat or such a seating frame.
Abstract:
This disclosure relates to halogen-free flame retardant polycarbonate/thermoplastic polyester molding compositions with improved mechanical properties and increased polyester loading level. More particularly, the disclosure relates to halogen-free polycarbonate/thermoplastic polyester resin alloys with polymeric phosphorus flame retardant additive and siloxane impact modifier. Also included are methods for preparing such compositions and articles there from.
Abstract:
A polyester composition includes specific amounts of a poly(alkylene terephthalate), an impact modifier, glass fibers, and a flame retardant. The impact modifier includes a polyolefin elastomer, optionally in combination with a thermoplastic polyester elastomer. The flame retardant includes a metal dialkylphosphinate, a melamine based flame retardant, and a flame retardant synergist that can be an organophosphine oxide, an oligomeric or polymeric bis(phenoxy)phosphazene, an organophosphate ester, or a combination thereof. The composition is useful for fabricating parts for electrical and electronic devices.
Abstract:
Disclosed is an improved process for preparing a modified polyalkylene terephthalate by melt polycondensation followed optionally by solid state condensation comprising reacting an alkylene diol and polyethylene terephthalate, wherein polymerization occurs in the presence of a catalyst complex formed by reaction of tetra(alkyl) titanate and a compound selected from phosphorus-containing compounds, nitrogen-containing compounds, boroncontaining compounds, and combinations thereof.